Quantitative Besicovitch projection theorem for irregular sets of directions

Type: Preprint

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2211.16911

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Favard length and quantitative rectifiability 2024 Damian Dąbrowski
+ PDF Chat A Quantification of a Besicovitch Non-linear Projection Theorem via Multiscale Analysis 2022 Blair Davey
Krystal Taylor
+ A Quantification of a Besicovitch Nonlinear Projection Theorem via Multiscale Analysis 2021 Blair Davey
Krystal Taylor
+ A Quantification of a Besicovitch Nonlinear Projection Theorem via Multiscale Analysis 2021 Blair Davey
Krystal Taylor
+ PDF Chat Characterising the big pieces of Lipschitz graphs property using projections 2018 Henri Martikainen
Tuomas Orponen
+ PDF Chat Plenty of big projections imply big pieces of Lipschitz graphs 2021 Tuomas Orponen
+ Projections of planar sets in Ahlfors-David regular sets of directions 2016 Tuomas Orponen
+ An improved bound on the Minkowski dimension of Besicovitch sets in R^3 1999 Nets Hawk Katz
Izabella Łaba
Terence Tao
+ PDF Chat Furstenberg sets for a fractal set of directions 2011 Ursula Molter
Ezequiel Rela
+ Projections of planar sets in well-separated directions 2016 Tuomas Orponen
+ Structure of sets with nearly maximal Favard length 2022 Alan L. Chang
Damian Dąbrowski
Tuomas Orponen
Michele Villa
+ Furstenberg sets for a fractal set of directions 2010 Ursula Molter
Ezequiel Rela
+ Furstenberg sets for a fractal set of directions 2010 Ursula Molter
Ezequiel Rela
+ PDF Chat An Improved Bound on the Minkowski Dimension of Besicovitch Sets in ℝ 3 2000 Nets Hawk Katz
Izabella Łaba
Terence Tao
+ A non-linear version of Bourgain’s projection theorem 2022 Pablo Shmerkin
+ PDF Chat Besicovitch–Federer projection theorem for continuously differentiable mappings having constant rank of the Jacobian matrix 2017 Jacek Gałęski
+ On sets of directions determined by subsets of ${\Bbb R}^d$ 2010 Alex Iosevich
Mihalis Mourgoglou
Steven Senger
+ On sets of directions determined by subsets of ${\Bbb R}^d$ 2010 Alex Iosevich
Mihalis Mourgoglou
Steven Senger
+ PDF Chat A quantitative version of the Besicovitch projection theorem via multiscale analysis 2008 Terence Tao
+ The Density Directions of Irregular Linearly Measurable Plane Sets 1935 Glenn Morgan

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors