Rotational Elliptic Weingarten surfaces in S2xR and the Hopf problem

Type: Preprint

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2211.11373

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Rotational elliptic Weingarten surfaces in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">S</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi></mml:math>and the Hopf problem 2023 Isabel Fernández
+ Rotational symmetry of Weingarten spheres in homogeneous three-manifolds 2018 José A. Gálvez
Pablo Mira
+ Rotational symmetry of Weingarten spheres in homogeneous three-manifolds 2018 José A. Gálvez
Pablo Mira
+ PDF Chat Rotational symmetry of Weingarten spheres in homogeneous three-manifolds 2020 José A. Gálvez
Pablo Mira
+ Linear Weingarten Surfaces in Euclidean and Hyperbolic Space 2008 Rafael López
+ Classification of rotational special Weingarten surfaces of minimal type in S^2 x R and H^2 x R 2010 Filippo Morabito
M. Magdalena Rodríguez
+ Surfaces with prescribed Weingarten operator 2002 Udo Simon
K. Voss
Luc Vrancken
Martin Wiehe
+ PDF Chat Weingarten hypersurfaces of the spherical type in Euclidean spaces 2020 Machado Cid D. F.
Riveros Carlos M. C.
+ Linear Weingarten surfaces in Euclidean and hyperbolic space 2009 Rafael López
+ Rotational linear Weingarten surfaces of hyperbolic type 2008 Rafael López
+ PDF Chat Rotational linear Weingarten surfaces into the Euclidean sphere 2012 A. Barros
J. Silva
P. Sousa
+ Classes of Weingarten Surfaces in S^2xR 2016 Armando V Corro
Marcelo Souza
Romildo Pina
+ Classes of Weingarten Surfaces in S^2xR 2016 Armando V Corro
Marcelo Alves de Souza
Romildo Pina
+ Rotational Weingarten surfaces in hyperbolic 3-space 2020 Uğur Dursun
+ Rotational linear Weingarten surfaces of hyperbolic type 2006 Rafael López
+ Elliptic Weingarten Hypersurfaces of Riemannian Products 2021 Ronaldo F. de Lima
Álvaro Ramos
João Paulo dos Santos
+ PDF Chat Rotational surfaces in isotropic spaces satisfying weingarten conditions 2016 Alper Osman Öğrenmiş
+ Weingarten type surfaces in $\mathbb{H}^2\times\mathbb{R}$ and $\mathbb{S}^2\times\mathbb{R}$ 2015 Abigail Folha
Carlos Peñafiel
+ Weingarten type surfaces in $\mathbb{H}^2\times\mathbb{R}$ and $\mathbb{S}^2\times\mathbb{R}$ 2015 Abigail Folha
Carlos Peñafiel
+ Rotational Linear Weingarten Surfaces into the Euclidean Sphere 2010 Abdênago Barros
Juscelino Silva
P. Sousa

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors