pmwd: A Differentiable Cosmological Particle-Mesh $N$-body Library

Type: Preprint

Publication Date: 2022-01-01

Citations: 7

DOI: https://doi.org/10.48550/arxiv.2211.09958

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Differentiable Cosmological Simulation with the Adjoint Method 2024 Yin Li
Chirag Modi
Drew Jamieson
Yucheng Zhang
Libin 利彬 Lu 陆
Yu 雨 Feng 冯
François Lanusse
Leslie Greengard
+ FlowPM: Distributed TensorFlow Implementation of the FastPM Cosmological N-body Solver 2020 Chirag Modi
François Lanusse
Uroš Seljak
+ DISCO-DJ I: a differentiable Einstein-Boltzmann solver for cosmology 2023 Oliver Hahn
Florian List
Natàlia Porqueres
+ JAX-COSMO: An End-to-End Differentiable and GPU Accelerated Cosmology Library 2023 J.E. Campagne
François Lanusse
J. Zuntz
A. Boucaud
Santiago Casas
Minas Karamanis
D. Kirkby
Denise Lanzieri
Yin Li
Austin Peel
+ $ξ$-torch: differentiable scientific computing library 2020 Muhammad Kasim
S. M. Vinko
+ PDF Chat JAX-COSMO: An End-to-End Differentiable and GPU Accelerated Cosmology Library 2023 J.E. Campagne
François Lanusse
J. Zuntz
A. Boucaud
Santiago Casas
Minas Karamanis
D. Kirkby
Denise Lanzieri
Austin Peel
Yin Li
+ PDF Chat JAX-COSMO: An End-to-End Differentiable and GPU Accelerated Cosmology Library 2023 J.E. Campagne
François Lanusse
J. Zuntz
A. Boucaud
Santiago Casas
Minas Karamanis
D. Kirkby
Denise Lanzieri
Austin Peel
Yin Li
+ PDF Chat COmoving Computer Acceleration (COCA): N -body simulations in an emulated frame of reference 2024 Deaglan J. Bartlett
Marco Chiarenza
Ludvig Doeser
Florent Leclercq
+ JAX, M.D.: End-to-End Differentiable, Hardware Accelerated, Molecular Dynamics in Pure Python 2019 Samuel S. Schoenholz
Ekin D. Cubuk
+ Learning an Effective Evolution Equation for Particle-Mesh Simulations Across Cosmologies 2023 Nicolas Payot
Pablo Lemos
Laurence Perreault-Levasseur
Carolina Cuesta-Lazaro
Chirag Modi
Yashar Hezaveh
+ Forecasting the power of higher order weak-lensing statistics with automatically differentiable simulations 2023 Denise Lanzieri
François Lanusse
Chirag Modi
Benjamin Horowitz
Joachim Harnois-Déraps
Jean‐Luc Starck
+ A memory-efficient neural ODE framework based on high-level adjoint differentiation 2022 Hong Zhang
Wenjun Zhao
+ JAX, M.D.: A Framework for Differentiable Physics 2019 Samuel S. Schoenholz
Ekin D. Cubuk
+ Forecasting the power of Higher Order Weak Lensing Statistics with automatically differentiable simulations 2023 Denise Lanzieri
François Lanusse
Chirag Modi
Benjamin Horowitz
Joachim Harnois-Déraps
Jean-Luc Starck
+ Tackling the Curse of Dimensionality with Physics-Informed Neural Networks 2023 Zheyuan Hu
Khemraj Shukla
George Em Karniadakis
Kenji Kawaguchi
+ PDF Chat Tackling the Curse of Dimensionality with Physics-Informed Neural Networks 2023 Zheyuan Hu
Khemraj Shukla
George Em Karniadakis
Kenji Kawaguchi
+ Tackling the curse of dimensionality with physics-informed neural networks 2024 Zheyuan Hu
Khemraj Shukla
George Em Karniadakis
Kenji Kawaguchi
+ PDF Chat TENG: Time-Evolving Natural Gradient for Solving PDEs with Deep Neural Net 2024 Zhuo Chen
Jacob McCarran
E. Ivan P. Vizcaino
Marin Soljačić
Di Luo
+ PDF Chat JAX, M.D. A framework for differentiable physics* 2021 Samuel S. Schoenholz
Ekin D. Cubuk
+ JAX, M.D.: A Framework for Differentiable Physics 2019 Samuel S. Schoenholz
Ekin D. Cubuk

Works Cited by This (0)

Action Title Year Authors