Two-dimensional obstructed atomic insulators with fractional corner charge in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>M</mml:mi><mml:mi>A</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Z</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> family

Type: Article

Publication Date: 2022-10-24

Citations: 22

DOI: https://doi.org/10.1103/physrevb.106.155144

Abstract

According to topological quantum chemistry (TQC), a class of electronic materials has been called obstructed atomic insulators (OAIs), in which a portion of valence electrons necessarily have their centers located on some empty Wyckoff positions (WPs) without atom occupation in the lattice. The obstruction of centering these electrons coinciding with their host atoms is nontrivial and results in metallic boundary states when the boundary is properly cut. Here, on the basis of first-principles calculations in combination with TQC analysis, we propose two-dimensional ${MA}_{2}{Z}_{4}$ $(M=\mathrm{Cr}, \mathrm{Mo}, and \mathrm{W}; A=\mathrm{Si} \mathrm{and} \mathrm{Ge}; Z=\mathrm{N}, \mathrm{P}, \mathrm{and} \mathrm{As})$ monolayers are all OAIs. A typical case is the recently synthesized ${\mathrm{MoSi}}_{2}{\mathrm{N}}_{4}$ (${\ensuremath{\alpha}}_{1}\text{\ensuremath{-}}{\mathrm{MoSi}}_{2}{\mathrm{N}}_{4}$). Although both ${\ensuremath{\alpha}}_{1}$- and ${\ensuremath{\alpha}}_{2}\text{\ensuremath{-}}{\mathrm{MoSi}}_{2}{\mathrm{N}}_{4}$ monolayers are topological trivial insulators, it has valence electrons centering empty WPs and the in-gap corner states at the three vertices of triangle-shaped nanodisk samples respecting ${C}_{3}$ rotation symmetry, which can be explained by the filling anomaly of electrons. In addition, the ${\ensuremath{\alpha}}_{2}\text{\ensuremath{-}}{\mathrm{MoSi}}_{2}{\mathrm{N}}_{4}$ monolayer exhibits unique OAI-induced metallic edge states along the $(1\overline{1})$ edge. The readily synthesized ${\mathrm{MoSi}}_{2}{\mathrm{N}}_{4}$ is quite stable and has a large bulk bandgap of 1.94 eV, which makes the identification of these edge and corner states most possible for experimental clarification.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Two-dimensional Obstructed Atomic Insulators with Fractional Corner Charge in MA$_2$Z$_4$ Family 2022 Lei Wang
Yi Jiang
Jiaxi Liu
Shuai Zhang
Jiangxu Li
Peitao Liu
Yan Sun
Hongming Weng
Xing‐Qiu Chen
+ PDF Chat Two-dimensional orbital-obstructed insulators with higher-order band topology 2024 Olga Arroyo-Gascón
Sergio Bravo
M. Pacheco
Leonor Chico
+ Phononic Obstructed Atomic Insulators with Robust Corner Modes 2022 Da‐Shuai Ma
Kejun Yu
Xiaoping Li
Xiaoyuan Zhou
Rui Wang
+ PDF Chat Second-order topological insulator in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">C</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:math> and its derivatives 2022 ZeHou Li
Pan Zhou
Qiuhui Yan
Xiangyang Peng
Zengsheng Ma
Lizhong Sun
+ PDF Chat Rhombohedral <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi mathvariant="normal">b</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi mathvariant="normal">e</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> as an intrinsic topological insulator due to strong van der Waals interlayer coupling 2018 Guohua Cao
Huijun Liu
Jinghua Liang
Long Cheng
Dengdong Fan
Zhenyu Zhang
+ Filling-Enforced Obstructed Atomic Insulators 2021 Yuanfeng Xu
Luis Elcoro
Zhida Song
Maia G. Vergniory
Claudia Felser
S. Parkin
Nicolas Regnault
Juan L. Mañes
B. Andrei Bernevig
+ Hidden higher-order topology in nonsymmorphic group IV and V tetragonal monolayers 2024 Yang Xue
Wei Xu
Bao Zhao
Zhongqin Yang
+ Three-Dimensional Real Space Invariants, Obstructed Atomic Insulators and A New Principle for Active Catalytic Sites 2021 Yuanfeng Xu
Luis Elcoro
Guowei Li
Zhida Song
Nicolas Regnault
Qun Yang
Yan Sun
S. Parkin
Claudia Felser
B. Andrei Bernevig
+ PDF Chat Topological crystalline insulator states in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ca</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>As</mml:mi></mml:mrow></mml:math> family 2018 Xiaoting Zhou
Chuang‐Han Hsu
Tay‐Rong Chang
Hung‐Ju Tien
Qiong Ma
Pablo Jarillo‐Herrero
Nuh Gedik
Arun Bansil
Vitor M. Pereira
Su-Yang Xu
+ PDF Chat Multiorbital model reveals a second-order topological insulator in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>H</mml:mi></mml:mrow></mml:math> transition metal dichalcogenides 2021 Jiang Zeng
Haiwen Liu
Hua Jiang
Qing-Feng Sun
X. C. Xie
+ PDF Chat Designing in-plane heterostructures of quantum spin Hall insulators from first principles: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mi mathvariant="normal">T</mml:mi></mml:mrow><mml:mo>′</mml:mo></mml:msup><mml:mo>−</mml:mo><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> with adsorbates 2016 Thomas Olsen
+ PDF Chat Absence of Topological Protection of the Interface States in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Photonic Crystals 2023 S. Xu
Yuhui Wang
Ritesh Agarwal
+ PDF Chat Signature of topological nontrivial band structure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ta</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi>Si</mml:mi><mml:msub><mml:mi>Te</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math> 2021 Shubhankar Roy
Ratnadwip Singha
A. Ghosh
P. Mandal
+ Obstructed atomic insulators: A rational strategy to reach two-dimensional quasi-particles 2023 Xianyong Ding
Xin Jin
Zhuo Chen
Xuewei Lv
Da‐Shuai Ma
Xiaozhi Wu
Rui Wang
+ PDF Chat Obstructed Surface States as the Descriptor for Predicting Catalytic Active Sites in Inorganic Crystalline Materials 2022 Guowei Li
Yuanfeng Xu
Zhida Song
Qun Yang
Yudi Zhang
Jian Liu
Uttam Gupta
Vicky Süβ
Yan Sun
Paolo Sessi
+ Abundance of second order topology in $C_3$ symmetric two-dimensional insulators 2022 Joachim Sødequist
Urko Petralanda
Thomas Olsen
+ PDF Chat Switchable large-gap quantum spin Hall state in the two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>M</mml:mi><mml:mrow><mml:msub><mml:mi mathvariant="normal">Si</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Z</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> class of materials 2022 Rajibul Islam
R. P. Verma
Barun Ghosh
Zahir Muhammad
Arun Bansil
Carmine Autieri
Bahadur Singh
+ Design of Antiferromagnetic Second-order Band Topology with Rotation Topological Invariants in Two Dimensions 2023 Fangyang Zhan
Zheng Qin
Dong-Hui Xu
Xiaoyuan Zhou
Da‐Shuai Ma
Rui Wang
+ PDF Chat Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties 2021 Lei Wang
Yongpeng Shi
Mingfeng Liu
Ao Zhang
Yilun Hong
Ronghan Li
Qiang Gao
Mingxing Chen
Wencai Ren
Hui‐Ming Cheng
+ Structure-driven intercalated architecture of septuple-atomic-layer $MA_2Z_4$ family with diverse properties from semiconductor to topological insulator to Ising superconductor 2020 Lei Wang
Yongpeng Shi
Mingfeng Liu
Yilun Hong
Mingxing Chen
Ronghan Li
Qiang Gao
Wencai Ren
Hui‐Ming Cheng
Yiyi Li

Works Cited by This (51)

Action Title Year Authors
+ PDF Chat Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium 2011 Cheng‐Cheng Liu
Wanxiang Feng
Yugui Yao
+ PDF Chat A tunable topological insulator in the spin helical Dirac transport regime 2009 David Hsieh
Yipu Xia
Dong Qian
L. Andrew Wray
J. H. Dil
Fabian Meier
Jürg Osterwalder
L. Patthey
J. G. Checkelsky
N. P. Ong
+ PDF Chat A topological Dirac insulator in a quantum spin Hall phase 2008 David Hsieh
Dong Qian
L. Andrew Wray
Y. Xia
Y. S. Hor
R. J. Cava
M. Zahid Hasan
+ PDF Chat Three-dimensional Dirac semimetal and quantum transport in Cd<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:msub></mml:math>As<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math> 2013 Zhijun Wang
Hongming Weng
Quansheng Wu
Xi Dai
Zhong Fang
+ PDF Chat The space group classification of topological band-insulators 2012 Robert-Jan Slager
Andrej Mesaroš
Vladimir Juričić
Jan Zaanen
+ PDF Chat Topological crystalline insulators in the SnTe material class 2012 Timothy H. Hsieh
Hsin Lin
Junwei Liu
Wenhui Duan
Arun Bansil
Liang Fu
+ PDF Chat Dirac semimetal and topological phase transitions in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>A</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>Bi (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:mtext>Na</mml:mtext></mml:mrow></mml:math>, K, Rb) 2012 Zhijun Wang
Yan Sun
Xing‐Qiu Chen
Cesare Franchini
Gang Xu
Hongming Weng
Xi Dai
Zhong Fang
+ PDF Chat Topological insulators and superconductors 2011 Xiao-Liang Qi
Shou-Cheng Zhang
+ PDF Chat Quantum Spin Hall Insulator State in HgTe Quantum Wells 2007 Markus König
S. Wiedmann
C. Brüne
Andreas Roth
H. Buhmann
L. W. Molenkamp
Xiao-Liang Qi
Shou-Cheng Zhang
+ PDF Chat Topological Crystalline Insulators 2011 Liang Fu