Directional extremal statistics for Ginibre eigenvalues

Type: Article

Publication Date: 2022-10-01

Citations: 6

DOI: https://doi.org/10.1063/5.0104290

Abstract

We consider the eigenvalues of a large dimensional real or complex Ginibre matrix in the region of the complex plane where their real parts reach their maximum value. This maximum follows the Gumbel distribution and that these extreme eigenvalues form a Poisson point process as the dimension asymptotically tends to infinity. In the complex case, these facts have already been established by Bender [Probab. Theory Relat. Fields 147, 241 (2010)] and in the real case by Akemann and Phillips [J. Stat. Phys. 155, 421 (2014)] even for the more general elliptic ensemble with a sophisticated saddle point analysis. The purpose of this article is to give a very short direct proof in the Ginibre case with an effective error term. Moreover, our estimates on the correlation kernel in this regime serve as a key input for accurately locating maxRSpec(X) for any large matrix X with i.i.d. entries in the companion paper [G. Cipolloni et al., arXiv:2206.04448 (2022)].

Locations

  • Journal of Mathematical Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Repository for Publications and Research Data (ETH Zurich) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Directional Extremal Statistics for Ginibre Eigenvalues 2022 Giorgio Cipolloni
L谩szl贸 Erd艖s
Yuanyuan Xu
Dominik Schr枚der
+ PDF Chat Extremal laws for the real Ginibre ensemble 2014 Brian Rider
Christopher D. Sinclair
+ PDF Chat The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions 2023 Gernot Akemann
Maurice Duits
Leslie Molag
+ PDF Chat The largest real eigenvalue in the real Ginibre ensemble and its relation to the Zakharov鈥揝habat system 2020 Jinho Baik
Thomas Bothner
+ PDF Chat On the Condition Number of the Shifted Real Ginibre Ensemble 2022 Giorgio Cipolloni
L谩szl贸 Erd艖s
Dominik Schr枚der
+ The complex elliptic Ginibre ensemble at weak non-Hermiticity: Edge spacing distributions 2024 Thomas Bothner
Alex Little
+ PDF Chat Density of Small Singular Values of the Shifted Real Ginibre Ensemble 2022 Giorgio Cipolloni
L谩szl贸 Erd艖s
Dominik Schr枚der
+ The extremal landscape for the C$尾$E ensemble 2022 Elliot Paquette
Ofer Zeitouni
+ Real eigenvalues of elliptic random matrices 2021 Sung鈥怱oo Byun
Nam-Gyu Kang
Ji Oon Lee
Jinyeop Lee
+ The largest real eigenvalue in the real Ginibre ensemble and its relation to the Zakharov-Shabat system 2018 Jinho Baik
Thomas Bothner
+ The largest real eigenvalue in the real Ginibre ensemble and its relation to the Zakharov-Shabat system 2018 Jinho Baik
Thomas Bothner
+ PDF Chat Empirical Distributions of Eigenvalues of Product Ensembles 2017 Tiefeng Jiang
Yongcheng Qi
+ The complex elliptic Ginibre ensemble at weak non-Hermiticity: edge spacing distributions 2022 Thomas Bothner
Alex Little
+ PDF Chat Complex symmetric, self-dual, and Ginibre random matrices: Analytical results for three classes of bulk and edge statistics 2024 Gernot Akemann
Noah Ayg眉n
Mario Kieburg
Patricia P盲脽ler
+ Empirical Distributions of Eigenvalues of Product Ensembles 2015 Tiefeng Jiang
Yongcheng Qi
+ Determinantal point processes associated with Bergman kernels: construction and limit theorems 2022 Thibaut Lemoine
+ PDF Chat Real Eigenvalues of Elliptic Random Matrices 2021 Sung鈥怱oo Byun
Nam-Gyu Kang
Ji Oon Lee
Jinyeop Lee
+ PDF Chat Approximation formula for complex spacing ratios in the Ginibre ensemble 2022 Ioachim G. Dusa
Tilo Wettig
+ Non-Hermitian ensembles 2015 Boris A. Khoruzhenko
Hans-J眉rgen Sommers
+ PDF Chat Local central limit theorem for real eigenvalue fluctuations of elliptic GinOE matrices 2024 Peter J. Forrester