Critical perturbations for second-order elliptic operators, I: Square function bounds for layer potentials

Type: Article

Publication Date: 2022-09-29

Citations: 3

DOI: https://doi.org/10.2140/apde.2022.15.1215

Abstract

This is the first part of a series of two papers where we study perturbations of divergence form second order elliptic operatorsdiv A∇ by complexvalued first and zeroth order terms, whose coefficients lie in critical spaces, via the method of layer potentials.In the present paper, we establish L 2 control of the square function via a vector-valued T b theorem and abstract layer potentials, and use these square function bounds to obtain uniform slice bounds for solutions.For instance, an operator for which our results are new is the generalized magnetic Schrödinger operator -(∇ia)A(∇ia) + V when the magnetic potential a and the electric potential V are accordingly small in the norm of a scale-invariant Lebesgue space.

Locations

  • Analysis & PDE - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Critical Perturbations for Second Order Elliptic Operators. Part I: Square function bounds for layer potentials 2020 Simon Bortz
Steve Hofmann
José Luis Luna García
Svitlana Mayboroda
Bruno Poggi
+ Critical Perturbations for Second Order Elliptic Operators. Part II: Non-tangential maximal function estimates 2023 Simon Bortz
Steve Hofmann
José Luis Luna García
Svitlana Mayboroda
Bruno Poggi
+ Square function estimates on layer potentials for higher-order elliptic equations 2015 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Square function estimates on layer potentials for higher-order elliptic equations 2015 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Analyticity of layer potentials and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> solvability of boundary value problems for divergence form elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> coefficients 2010 M. Angeles Alfonseca
Pascal Auscher
Andreas Axelsson
Steve Hofmann
Seick Kim
+ PDF Chat Square function estimates on layer potentials for higher‐order elliptic equations 2017 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ PDF Chat Layer potentials beyond singular integral operators 2013 Alon Rosen
+ Layer potentials beyond singular integral operators 2012 Andreas Rosén
+ Layer potentials beyond singular integral operators 2012 Andreas Rosén
+ Critical perturbations of elliptic operators by lower order terms 2021 José Luis Luna-Garcia
+ PDF Chat Bounds on layer potentials with rough inputs for higher order elliptic equations 2019 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Boundary value problems for second-order elliptic equations and related topics. 2021 Bruno Poggi Cevallos
+ Mapping Properties of Layer Potentials Associated with Higher-Order Elliptic Operators in Lipschitz Domains 2010 Irina Mitrea
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ Nontangential estimates on layer potentials and the Neumann problem for higher order elliptic equations 2018 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Nontangential estimates on layer potentials and the Neumann problem for higher order elliptic equations 2018 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ PDF Chat Nontangential Estimates on Layer Potentials and the Neumann Problem for Higher-Order Elliptic Equations 2020 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ PDF Chat Spectral properties of the layer potentials on Lipschitz domains 2008 Tongkeun Chang
Kijung Lee
+ Layer potentials and boundary value problems for elliptic equations with complex $L^{\infty}$ coefficients satisfying the small Carleson measure norm condition 2013 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ PDF Chat L2-Boundedness of Gradients of Single Layer Potentials for Elliptic Operators with Coefficients of Dini Mean Oscillation-Type 2023 Alejandro Molero
Mihalis Mourgoglou
Carmelo Puliatti
Xavier Tolsa