Weak-signal extraction enabled by deep-neural-network denoising of diffraction data

Type: Preprint

Publication Date: 2022-10-06

Citations: 2

DOI: https://doi.org/10.21203/rs.3.rs-2001637/v1

Abstract

Abstract Removal or cancellation of noise has wide-spread applications for imaging and acoustics. In every-day-life applications, denoising may even include generative aspects which are unfaithful to the ground truth. For scientific applications, however, denoising must reproduce the ground truth accurately. Here, we show how data can be denoised via a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. This way, the neural network learns about the statistical properties of the noise. We demonstrate that using artificial noise (such as Poisson and Gaussian) does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems.

Locations

  • arXiv (Cornell University) - View - PDF
  • Technical University of Denmark, DTU Orbit (Technical University of Denmark, DTU) - View - PDF
  • Desy publication database (The Deutsches Elektronen-Synchrotron) - View - PDF
  • Research Square (Research Square) - View - PDF

Similar Works

Action Title Year Authors
+ Weak-signal extraction enabled by deep-neural-network denoising of diffraction data 2022 Jens Oppliger
M. Michael Denner
J. KĂźspert
Ruggero Frison
Qisi Wang
A. Morawietz
Oleh Ivashko
Ann‐Christin Dippel
M. v. Zimmermann
I. Biało
+ Deep Denoising For Scientific Discovery: A Case Study In Electron Microscopy 2020 Sreyas Mohan
RamĂłn Manzorro
Joshua Vincent
Binh Tang
Dev Yashpal Sheth
Eero P. Simoncelli
David S. Matteson
Peter A. Crozier
Carlos Fernandez‐Granda
+ PDF Chat Phase Retrieval From 4-Dimensional Electron Diffraction Datasets 2021 Thomas Friedrich
Chu-Ping Yu
Johan Verbeek
Timothy J. Pennycook
Sandra Van Aert
+ Phase retrieval from 4-dimensional electron diffraction datasets 2021 Thomas Friedrich
Chu-Ping Yu
Johan Verbeek
Timothy J. Pennycook
Sandra Van Aert
+ Deep Denoising for Scientific Discovery: A Case Study in Electron Microscopy 2022 Sreyas Mohan
RamĂłn Manzorro
Joshua Vincent
Binh Tang
Dev Yashpal Sheth
Eero P. Simoncelli
David S. Matteson
Peter A. Crozier
Carlos Fernandez‐Granda
+ Physics Constrained Unsupervised Deep Learning for Rapid, High Resolution Scanning Coherent Diffraction Reconstruction 2023 Oliver Hoidn
Aashwin Mishra
Apurva Mehta
+ PDF Chat Ptychoformer: A Physics-Guided Deep Learning Framework for Ptychographic Imaging 2024 Han Yue
Jun Cheng
Yu‐Xuan Ren
Philip Heng Wai Leong
Steve Feng Shu
+ PDF Chat Disentangling multiple scattering with deep learning: application to strain mapping from electron diffraction patterns 2022 Joydeep Munshi
Alexander Rakowski
Benjamin H. Savitzky
Steven E. Zeltmann
Jim Ciston
Matthew Henderson
Shreyas Cholia
Andrew M. Minor
Maria K. Y. Chan
Colin Ophus
+ PDF Chat Noise2Inverse: Self-Supervised Deep Convolutional Denoising for Tomography 2020 Allard A. Hendriksen
DaniĂŤl M. Pelt
Kees Joost Batenburg
+ Advanced denoising for X-ray ptychography 2019 Huibin Chang
Pablo Enfedaque
Jie Zhang
Juliane Reinhardt
Bjoern Enders
Young‐Sang Yu
David A. Shapiro
Christian G. Schroer
Tieyong Zeng
Stefano Marchesini
+ prDeep: Robust Phase Retrieval with a Flexible Deep Network 2018 Christopher A. Metzler
Philip Schniter
Ashok Veeraraghavan
Richard G. Baraniuk
+ Noise-robust latent vector reconstruction in ptychography using deep generative models 2023 Jacob Seifert
Yifeng Shao
Allard P. Mosk
+ Noise-robust latent vector reconstruction in ptychography using deep generative models 2023 Jacob Seifert
Yifeng Shao
Allard P. Mosk
+ Removing Pixel Noises and Spatial Artifacts with Generative Diversity Denoising Methods. 2021 Mangal Prakash
Mauricio Delbracio
Peyman Milanfar
Florian Jug
+ PDF Chat Physics Informed Neural Network Enhanced Denoising for Atomic Resolution STEM Imaging 2024 Zuhier Awan
J. Shabeer
Umar Saleem
Sahid Mehmood
T. Qadeer
+ When deep denoising meets iterative phase retrieval 2020 Yaotian Wang
Xiaohang Sun
Jason W. Fleischer
+ When deep denoising meets iterative phase retrieval 2020 Yaotian Wang
Xiaohang Sun
Jason W. Fleischer
+ Image Segmentation using U-Net Architecture for Powder X-ray Diffraction Images 2023 Howard Yanxon
Eric J. Roberts
Hannah Parraga
James Weng
Wenqian Xu
Uta Ruett
Alexander Hexemer
Petrus H. Zwart
Nickolas Schwarz
+ PDF Chat Deep-learning real-time phase retrieval of imperfect diffraction patterns from X-ray free-electron lasers 2024 Sung Yun Lee
Do Hyung Cho
Chul-Ho Jung
Daeho Sung
Daewoong Nam
Sang Soo Kim
Changyong Song
+ Rapid 3D nanoscale coherent imaging via physics-aware deep learning 2021 Henry Chan
Youssef S. G. Nashed
Saugat Kandel
S. O. Hruszkewycz
Subramanian K. R. S. Sankaranarayanan
Ross Harder
Mathew J. Cherukara

Works Cited by This (19)

Action Title Year Authors
+ PDF Chat Susceptibility Anisotropy in an Iron Arsenide Superconductor Revealed by X-Ray Diffraction in Pulsed Magnetic Fields 2012 Jacob P. C. Ruff
J.-H. Chu
Hsueh-Hui Kuo
Ritesh Das
Hiroyuki Nojiri
I. R. Fisher
Zahir Islam
+ PDF Chat Tuning competing orders in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>La</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mtext>Sr</mml:mtext></mml:mrow><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mrow><mml:mtext>CuO</mml:mtext></mml:mrow><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>cuprate superconductors by the application of an … 2008 J. Chang
Ch. Niedermayer
R. Gilardi
N. B. Christensen
H. M. Rønnow
D. F. McMorrow
M. Ay
J. Stahn
Oleg V. Sobolev
A. Hiess
+ Angle-resolved photoemission studies of quantum materials 2021 Jonathan A. Sobota
Yu He
Zhi‐Xun Shen
+ PDF Chat Rotated stripe order and its competition with superconductivity in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">La</mml:mi><mml:mrow><mml:mn>1.88</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="normal">Sr</mml:mi><mml:mrow><mml:mn>0.12</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="normal">CuO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> 2014 Vivek Thampy
M. P. M. Dean
N. B. Christensen
Lucia Steinke
Z. Islam
M. Oda
M. Ido
N. Momono
S. B. Wilkins
J. P. Hill
+ PDF Chat Charge density wave fluctuations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>La</mml:mtext><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>Sr</mml:mtext><mml:mi>x</mml:mi></mml:msub></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>CuO</mml:mtext><mml:mn>4</mml:mn></mml:msub></mml:math>and their … 2014 T. P. Croft
C. Lester
Mark S. Senn
A. Bombardi
S. M. Hayden
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ PDF Chat Accurate Image Super-Resolution Using Very Deep Convolutional Networks 2016 Jiwon Kim
Jung Kwon Lee
Kyoung Mu Lee
+ PDF Chat Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising 2017 Kai Zhang
Wangmeng Zuo
Yunjin Chen
Deyu Meng
Lei Zhang
+ Field-induced spin-density wave beyond hidden order in URu2Si2 2016 W. Knafo
F. Duc
F. Bourdarot
K. Kuwahara
Hiroyuki Nojiri
Dai Aoki
Jean‐Michel Billette
P. Frings
Xavier Tonon
E. Lelièvre‐Berna
+ Noise2Noise: Learning Image Restoration without Clean Data 2018 Jaakko Lehtinen
Jacob Munkberg
Jon Hasselgren
Samuli Laine
Tero Karras
Miika Aittala
Timo Aila