Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data

Type: Article

Publication Date: 2008-01-01

Citations: 3

DOI: https://doi.org/10.1214/08-ejs286

Abstract

In the framework of quantum optics, we study the problem of goodness-of-fit testing in a severely ill-posed inverse problem. A novel testing procedure is introduced and its rates of convergence are investigated under various smoothness assumptions. The procedure is derived from a projection-type estimator, where the projection is done in $\mathbb{L}_{2}$ distance on some suitably chosen pattern functions. The proposed methodology is illustrated with simulated data sets.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View
  • Electronic Journal of Statistics - View - PDF

Similar Works

Action Title Year Authors
+ Nonparametric estimation of the purity of a quantum state in quantum homodyne tomography with noisy data 2006 Katia MĂ©ziani
+ PDF Chat Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data 2013 Pierre Alquier
Katia MĂ©ziani
Gabriel Peyré
+ PDF Chat State estimation in quantum homodyne tomography with noisy data 2008 Jean‐Marie Aubry
Cristina Butucea
Katia MĂ©ziani
+ Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data 2015 Cristina Butucea
M. Guta
L.M. Artiles
+ PDF Chat The efficiency of quantum tomography based on photon detection 2013 Yu. I. Bogdanov
S. P. Kulik
+ PDF Chat Adaptive sup-norm estimation of the Wigner function in noisy quantum homodyne tomography 2018 Karim Lounici
Katia MĂ©ziani
Gabriel Peyré
+ PDF Chat Performance advantage of discriminating one-versus-two incoherent sources based on quantum hypothesis testing 2024 Jiandong Zhang
Mei-Ming Zhang
Chuang Li
Shuai Wang
+ PDF Chat General Expressions for the Quantum Fisher Information Matrix with Applications to Discrete Quantum Imaging 2021 Lukas J. Fiderer
Tommaso Tufarelli
Samanta Piano
Gerardo Adesso
+ PDF Chat Efficient algorithm for optimizing data-pattern tomography 2014 L. Motka
B. Stoklasa
J. Ƙeháček
Z. Hradil
V. Karasek
D. Mogilevtsev
Georg Harder
Christine Silberhorn
L. L. SĂĄnchez-Soto
+ PDF Chat Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data 2007 Cristina Butucea
Mădălin Guƣǎ
L.M. Artiles
+ PDF Chat A comparative study of estimation methods in quantum tomography 2019 Anirudh Acharya
Theodore Kypraios
Mădălin Guƣǎ
+ PDF Chat Homodyne Tomography and the Reconstruction of Quantum States of Light 2007 Giacomo Mauro D’Ariano
Lorenzo Maccone
Massimiliano F. Sacchi
+ PDF Chat Effective method to estimate multidimensional Gaussian states 2009 J. Ƙeháček
Stefano Olivares
D. Mogilevtsev
Z. Hradil
Matteo G. A. Paris
S. Fornaro
Virginia D’Auria
A. Porzio
S. Solimeno
+ PDF Chat Modern compressive tomography for quantum information science 2021 Yong Siah Teo
L. L. SĂĄnchez-Soto
+ Maximum-likelihood algorithm for quantum tomography 1999 Konrad Banaszek
+ Quantum state estimation with nuisance parameters 2019 Jun Suzuki
Yuxiang Yang
Masahito Hayashi
+ PDF Chat Quantum state estimation with nuisance parameters 2020 Jun Suzuki
Yuxiang Yang
Masahito Hayashi
+ PDF Chat Nonparametric estimation of the purity of a quantum state in quantum homodyne tomography with noisy data 2007 Katia MĂ©ziani
+ Homodyne tomography and the reconstruction of quantum states of light 2005 Giacomo Mauro D’Ariano
Lorenzo Maccone
Massimiliano F. Sacchi
+ Quantum Tomography 2003 Giacomo Mauro D’Ariano
Matteo G. A. Paris
Massimiliano F. Sacchi