A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition

Type: Preprint

Publication Date: 2011-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1105.5331

Locations

  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition 2011 Hans De Sterck
+ PDF Chat A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition 2012 Hans De Sterck
+ A Nonlinearly Preconditioned Conjugate Gradient Algorithm for Rank-R Canonical Tensor Approximation 2014 Hans De Sterck
Manda Winlaw
+ A Nonlinearly Preconditioned Conjugate Gradient Algorithm for Rank-R Canonical Tensor Approximation 2014 Hans De Sterck
Manda Winlaw
+ PDF Chat A nonlinearly preconditioned conjugate gradient algorithm for rankā€<i>R</i> canonical tensor approximation 2014 Hans De Sterck
Manda Winlaw
+ Nonlinear Least Squares Solver for Evaluating Canonical Tensor Decomposition 2020 Igor Kaporin
+ Tensor-GMRES method for large sparse systems of nonlinear equations 1994 Dan Feng
Thomas H. Pulliam
+ Nonlinearly Preconditioned L-BFGS as an Acceleration Mechanism for Alternating Least Squares, with Application to Tensor Decomposition 2018 Hans De Sterck
Alexander J. M. Howse
+ Nonlinearly Preconditioned L-BFGS as an Acceleration Mechanism for Alternating Least Squares, with Application to Tensor Decomposition 2018 Hans De Sterck
Alexander J. M. Howse
+ Steepest Descent Preconditioning for Nonlinear GMRES Optimization 2011 Hans De Sterck
+ Steepest Descent Preconditioning for Nonlinear GMRES Optimization 2011 Hans De Sterck
+ PDF Chat Steepest descent preconditioning for nonlinear GMRES optimization 2012 Hans De Sterck
+ PDF Chat Nonlinearly preconditioned Lā€BFGS as an acceleration mechanism for alternating least squares with application to tensor decomposition 2018 Hans De Sterck
Alexander J. M. Howse
+ A robust GMRES algorithm in Tensor Train format 2022 Olivier Coulaud
Luc Giraud
Martina Iannacito
+ A Generalized GMRES Iterative Method 2001 David R. Kincaid
Jen-Yuan Chen
David M. Young
+ A Hybrid Newton-GMRES Method for Solving Nonlinear Equations 2001 Stefania Bellavia
M. Macconi
Benedetta Morini
+ A new form of LSMR for solving linear systems and least-squares problems 2023 Maryam Mojarrab
Afsaneh Hasanpour
Somayyeh Ghadamyari
+ PDF Chat Study on the GMRES (m) Method of Krylov Subspace and Its Application 2008 Silin Bai
Jianping Liu
+ Tensor GMRES and Golub-Kahan Bidiagonalization methods via the Einstein product with applications to image and video processing 2020 M. El Guide
Alaa El Ichi
Fatemeh Panjeh Ali Beik
Khalide Jbilou
+ The heavy ball GMRES based on tensor format for Sylvester Tensor equations 2021 Azita Tajaddini

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors