Selecting the number of principal components: estimation of the true rank of a noisy matrix

Type: Preprint

Publication Date: 2014-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1410.8260

Locations

  • DataCite API - View
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Selecting the number of principal components: estimation of the true rank of a noisy matrix 2014 Yunjin Choi
Jonathan Taylor
Robert Tibshirani
+ Selecting the number of principal components: Estimation of the true rank of a noisy matrix 2017 Yunjin Choi
Jonathan E. Taylor
Robert Tibshirani
+ On estimation of the noise variance in high-dimensional probabilistic principal component analysis 2013 Damien Passemier
Zhaoyuan Li
Jianfeng Yao
+ PDF Chat Estimating the number of signals using principal component analysis 2019 Joni Virta
Klaus Nordhausen
+ Selecting the number of components in PCA via random signflips 2020 David Hong
Yue Sheng
Edgar Dobriban
+ When are the most informative components for inference also the principal components 2013 Raj Rao Nadakuditi
+ When are the most informative components for inference also the principal components? 2013 Raj Rao Nadakuditi
+ A randomized algorithm for principal component analysis 2008 Vladimir Rokhlin
Arthur Szlam
Mark Tygert
+ A randomized algorithm for principal component analysis 2008 Vladimir Rokhlin
Arthur Szlam
Mark Tygert
+ PDF Chat A Randomized Algorithm for Principal Component Analysis 2009 Vladimir Rokhlin
Arthur Szlam
Mark Tygert
+ PDF Chat Application of Random Matrix Theory in High-Dimensional Statistics 2024 Swapnaneel Bhattacharyya
Srijan Chattopadhyay
Sevantee Basu
+ Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated 2016 Namrata Vaswani
Han Guo
+ Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated 2016 Namrata Vaswani
Han Guo
+ Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated 2016 Namrata Vaswani
Han Guo
+ Determining the number of correlated signals between two data sets using PCA-CCA when sample support is extremely small 2015 Yang Song
Peter J. Schreier
Nicholas J. Roseveare
+ Feasible model-based principal component analysis: Joint estimation of rank and error covariance matrix 2024 Tak-Shing Chan
Alex Gibberd
+ Low-Rank Principal Eigenmatrix Analysis 2019 Krishna Balasubramanian
Elynn Y. Chen
Jianqing Fan
Xiang Wu
+ A generalized information criterion for high-dimensional PCA rank selection 2020 Hung Hung
Suyun Huang
Ching‐Kang Ing
+ PDF Chat Principal component analysis for max-stable distributions 2024 Felix Reinbott
Anja Janßen
+ De-Biased Sparse PCA: Inference for Eigenstructure of Large Covariance Matrices 2021 Jana JankovĂĄ
Sara van de Geer

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors