Localized quantitative estimates and potential blow-up rates for the Navier-Stokes equations

Type: Preprint

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2209.15627

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Localized Quantitative Estimates and Potential Blow-Up Rates for the Navier–Stokes Equations 2023 Tobias Barker
+ PDF Chat Quantitative Regularity for the Navier–Stokes Equations Via Spatial Concentration 2021 Tobias Barker
Christophe Prange
+ From concentration to quantitative regularity: a short survey of recent developments for the Navier-Stokes equations 2022 Tobias Barker
Christophe Prange
+ From Concentration to Quantitative Regularity: A Short Survey of Recent Developments for the Navier–Stokes Equations 2023 Tobias Barker
Christophe Prange
+ Quantitative bounds for critically bounded solutions to the three-dimensional Navier-Stokes equations in Lorentz spaces 2022 Feng Wen
He Jiao
Weinan Wang
+ Quantitative bounds for critically bounded solutions to the Navier-Stokes equations 2019 Terence Tao
+ PDF Chat Quantitative bounds for bounded solutions to the Navier-Stokes equations in endpoint critical Besov spaces 2024 Ruilin Hu
Phuoc‐Tai Nguyen
Quoc‐Hung Nguyen
Ping Zhang
+ PDF Chat Improved Quantitative Regularity for the Navier–Stokes Equations in a Scale of Critical Spaces 2021 Stan Palasek
+ PDF Chat Infinite energy solutions to the Navier-Stokes equations in the half-space and applications 2018 Christophe Prange
+ PDF Chat Characterization of Solutions to Dissipative Systems with Sharp Algebraic Decay 2016 Lorenzo Brandolese
+ Localized smoothing and concentration for the Navier-Stokes equations in the half space 2021 Dallas Albritton
Tobias Barker
Christophe Prange
+ PDF Chat Localized smoothing for the Navier-Stokes equations and concentration of critical norms near singularities 2020 Tobias Barker
Christophe Prange
+ On the Convergence Rate of Vanishing Viscosity Approximations 2003 Alberto Bressan
Tong Yang
+ PDF Chat Local Energy Weak Solutions for the Navier–Stokes Equations in the Half-Space 2019 Yasunori Maekawa
Hideyuki Miura
Christophe Prange
+ A note on weak solutions to the Navier-Stokes equations that are locally in $L_\infty(L^{3,\infty})$. 2019 G. Serëgin
+ Higher derivatives of suitable weak solutions of the hypodissipative Navier-Stokes equations 2020 Hyunju Kwon
Wojciech S. Ożański
+ On the regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$ 2007 Alexey Cheskidov
Roman Shvydkoy
+ Localized energy inequalities for the Navier-Stokes and the Euler equations 2012 Dongho Chae
+ PDF Chat Quantitative bounds for critically bounded solutions to the Navier-Stokes equations 2021 Terence Tao
+ PDF Chat Localized Smoothing for the Navier–Stokes Equations and Concentration of Critical Norms Near Singularities 2020 Tobias Barker
Christophe Prange

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors