Local energy decay for several evolution equations on asymptotically euclidean manifolds

Type: Article

Publication Date: 2012-01-01

Citations: 21

DOI: https://doi.org/10.24033/asens.2166

Abstract

This report is devoted to the study of the local energy decay for several evolution equations associated to long range metric perturbations of the Euclidean Laplacian on $${\mathbb{R}}^{d}$$ .

Locations

  • Annales Scientifiques de l École Normale SupĂ©rieure - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ Local energy decay for several evolution equations on asymptotically euclidean manifolds 2010 Jean‐François Bony
Dietrich HĂ€fner
+ PDF Chat Local energy decay for several evolution equations on asymptotically euclidean manifolds 2010 Jean Francois Bony
Dietrich HĂ€fner
+ PDF Chat Low Frequency Estimates and Local Energy Decay for Asymptotically Euclidean Laplacians 2011 Jean‐Marc Bouclet
+ PDF Chat On the evolution governed by the infinity Laplacian 2006 Petri Juutinen
Bernd Kawohl
+ On the local energy decay of solutions for some evolution equations in a two dimensional exterior domain 2007 Wakako Dan
+ Local energy decay theorem and its application to some nonlinear evolution equations 2003 èŁ•ć­ æŠŽæœŹ
+ Energy Decay Rate of the Wave Equations on Riemannian Manifolds with Critical Potential 2017 Yuxiang Liu
Peng‐Fei Yao
+ PDF Chat Local energy decay of solutions to the wave equation for nontrapping metrics 2004 Georgi Vodev
+ LOCAL ENERGY DECAY OF SOLUTIONS TO THE WAVE EQUATION FOR NONTRAPPING METRICS 2004 Georgi Vodev
+ Local energy decay and the vector field method 2020 Jacob Sterbenz
+ PDF Chat Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part II 2009 Wilhelm Schlag
Avy Soffer
Wolfgang Staubach
+ Low frequency estimates and local energy decay for asymptotically euclidean Laplacians 2010 Jean‐Marc Bouclet
+ Localized Solutions of the Schrödinger Equation on Hybrid Spaces. Relation to the Behavior of Geodesics and to Analytic Number Theory 2018 А. И. КафарДĐČоч
+ Local energy estimate on Kerr black hole backgrounds 2008 Daniel Tataru
Mihai Tohaneanu
+ PDF Chat The blow up of solutions to semilinear wave equations on asymptotically Euclidean manifolds 2023 Mengyun Liu
Chengbo Wang
+ On a class of evolution equations in Lipschitz subdomains of Riemannian manifolds 2024 Bruno de Andrade
+ On global behavior of solutions of the Maxwell-Klein-Gordon equations 2015 Shiwu Yang
+ PDF Chat On the global behavior of solutions of the Maxwell–Klein–Gordon equations 2018 Shiwu Yang
+ PDF Chat A Local Energy Estimate for Wave Equations on Metrics Asymptotically Close to Kerr 2020 Hans Lindblad
Mihai Tohaneanu
+ On the $p$-Laplacian evolution equation in metric measure spaces 2021 Wojciech GĂłrny
José M. Mazón