An optimal algorithm for bandit convex optimization

Type: Preprint

Publication Date: 2016-01-01

Citations: 9

DOI: https://doi.org/10.48550/arxiv.1603.04350

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ An optimal algorithm for bandit convex optimization 2016 Elad Hazan
Yuanzhi Li
+ PDF Chat A Generalized Approach to Online Convex Optimization 2024 Mohammad Pedramfar
Vaneet Aggarwal
+ PDF Chat Stochastic Convex Optimization with Bandit Feedback 2013 Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
+ Risk-Averse Stochastic Convex Bandit 2018 Adrian Rivera Cardoso
Huan Xu
+ Online convex optimization in the bandit setting: gradient descent without a gradient 2004 Abraham D. Flaxman
Adam Tauman Kalai
H. Brendan McMahan
+ Stochastic convex optimization with bandit feedback 2011 Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
+ Stochastic convex optimization with bandit feedback 2011 Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
+ On the Complexity of Bandit Linear Optimization 2014 Ohad Shamir
+ PDF Chat Optimistic Safety for Linearly-Constrained Online Convex Optimization 2024 Spencer Hutchinson
Tianyi Chen
Mahnoosh Alizadeh
+ PDF Chat Online Newton Method for Bandit Convex Optimisation 2024 Hidde Fokkema
Dirk van der Hoeven
Tor Lattimore
Jack J. Mayo
+ PDF Chat Projection-Free Online Convex Optimization with Time-Varying Constraints 2024 Dan Garber
Ben Kretzu
+ PDF Chat Fast Rates in Online Convex Optimization by Exploiting the Curvature of Feasible Sets 2024 Taira Tsuchiya
Shinji Ito
+ A Modern Introduction to Online Learning 2019 Francesco Orabona
+ A Modern Introduction to Online Learning. 2019 Francesco Orabona
+ Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization 2021 Aadirupa Saha
Nagarajan Natarajan
Praneeth Netrapalli
Prateek Jain
+ Quantum Algorithm for Online Convex Optimization 2020 Jianhao He
Feidiao Yang
Jialin Zhang
Lvzhou Li
+ Bandit Convex Optimisation Revisited: FTRL Achieves $\tilde{O}(t^{1/2})$ Regret 2023 D. R. Young
Douglas J. Leith
George Iosifidis
+ An Optimal Algorithm for Linear Bandits 2011 Nicolò Cesa‐Bianchi
Sham M. Kakade
+ An Optimal Algorithm for Linear Bandits 2011 Nicolò Cesa‐Bianchi
Sham M. Kakade
+ Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization 2021 Aadirupa Saha
Nagarajan Natarajan
Praneeth Netrapalli
Prateek Jain

Works Cited by This (0)

Action Title Year Authors