On non-autonomous maximal regularity for elliptic operators in divergence form

Type: Preprint

Publication Date: 2016-02-26

Citations: 3

Abstract

We consider the Cauchy problem for non-autonomous forms inducing elliptic operators in divergence form with Dirichlet, Neumann, or mixed boundary conditions on an open subset $\Omega$ $\subseteq$ R n. We obtain maximal regularity in L 2 ($\Omega$) if the coefficients are bounded, uniformly elliptic, and satisfy a scale invariant bound on their fractional time-derivative of order one-half. Previous results even for such forms required control on a time-derivative of order larger than one-half.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ On non-autonomous maximal regularity for elliptic operators in divergence form 2016 Pascal Auscher
Moritz Egert
+ On non-autonomous maximal regularity for elliptic operators in divergence form 2016 Pascal Auscher
Moritz Egert
+ PDF Chat On non-autonomous maximal regularity for elliptic operators in divergence form 2016 Pascal Auscher
Moritz Egert
+ Non-Autonomous Maximal $L^p$-Regularity for Rough Divergence Form Elliptic Operators 2015 Stephan Fackler
+ Non-Autonomous Maximal $L^p$-Regularity for Rough Divergence Form Elliptic Operators 2015 Stephan Fackler
+ Non-Autonomous Maximal Regularity for Forms Given by Elliptic Operators of Bounded Variation 2016 Stephan Fackler
+ Non-Autonomous Maximal Regularity for Forms Given by Elliptic Operators of Bounded Variation 2016 Stephan Fackler
+ Non-autonomous maximal regularity for forms given by elliptic operators of bounded variation 2017 Stephan Fackler
+ On maximal parabolic regularity for non-autonomous parabolic operators 2016 Karoline Disser
A. F. M. ter Elst
Joachim Rehberg
+ On maximal parabolic regularity for non-autonomous parabolic operators 2016 Karoline Disser
A. F. M. ter Elst
Joachim Rehberg
+ Non-autonomous Cauchy problems governed by forms: maximal regularity and invariance 2015 Dominik Dier
+ On maximal parabolic regularity for non-autonomous parabolic operators 2016 Karoline Disser
A. F. M. ter Elst
Joachim Rehberg
+ PDF Chat Non-autonomous maximal regularity for fractional evolution equations 2022 Mahdi Achache
+ On non-autonomous fractional evolution equations and applications 2024 Mahdi Achache
+ On maximal parabolic regularity for non-autonomous parabolic operators 2016 Karoline Disser
A. F. M. ter Elst
Joachim Rehberg
+ On maximal regularity of type<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mtext>–</mml:mtext><mml:msup><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msup></mml:math>under minimal assumptions for elliptic non-divergence operators 2008 Peer Christian Kunstmann
+ PDF Chat Counterexamples to maximal regularity for operators in divergence form 2024 Sebastian Bechtel
Connor Mooney
Mark Veraar
+ Optimal Sobolev Regularity for Linear Second-Order Divergence Elliptic Operators Occurring in Real-World Problems 2015 Karoline Disser
Hans-Christoph Kaiser
Joachim Rehberg
+ Counterexamples to maximal regularity for operators in divergence form 2024 Sebastian Bechtel
Connor Mooney
Mark Veraar
+ PDF Chat Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients 2018 Serena Dipierro
Aram Karakhanyan
Enrico Valdinoci

Works Cited by This (0)

Action Title Year Authors