Any Baumslag-Solitar action on surfaces with a pseudo-Anosov element has a finite orbit

Type: Preprint

Publication Date: 2017-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1703.09037

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Any Baumslag-Solitar action on surfaces with a pseudo-Anosov element has a finite orbit 2017 Nancy Guelman
Isabelle Liousse
+ Any Baumslag–Solitar action on surfaces with a pseudo-Anosov element has a finite orbit 2018 Nancy Guelman
Isabelle Liousse
+ Actions of Baumslag-Solitar groups on surfaces 2010 Nancy Guelman
Isabelle Liousse
+ Actions of Baumslag-Solitar groups on surfaces 2010 Nancy Guelman
Isabelle Liousse
+ Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo-)Anosov elements 2013 Juan Alonso
Nancy Guelman
Juliana Xavier
+ Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements 2014 Juan Alonso
Nancy Guelman
Juliana Xavier
+ PDF Chat Actions of Baumslag-Solitar groups on surfaces 2012 Nancy Guelman
Isabelle Liousse
+ PDF Chat Minimal models for non-free circle actions 2000 AgustĂ­ Roig
Martintxo Saralegi-Aranguren
+ Minimal Models for Non-Free Circle Actions 2000 AgustĂ­ Roig
Martintxo Saralegi-Aranguren
+ PDF Chat Minimal Models for Non-Free Circle Actions 2000 AgustĂ­ Roig
Martintxo Saralegi-Aranguren
+ Dynamics of the monodromies of the fibrations on the magic 3-manifold 2014 Eiko Kin
+ On models of orbit configuration spaces of surfaces 2020 Mohamad Maassarani
+ On models of orbit configuration spaces of surfaces 2020 Mohamad Maassarani
+ PDF Chat On minimal immersions of $S^2$ in $S^{2m}$ 1973 J. Lucas M. Barbosa
+ PDF Chat Homotopy-Anosov $\mathbb{Z}^2$ actions on exotic tori 2024 Mauricio Bustamante
Bena Tshishiku
+ $\mathbf{RP}^n \# \mathbf{RP}^n$ and some others admit no $\mathbf{RP}^n$-structure 2022 Suhyoung Choi
+ On the size of a stable minimal surface in đť‘…Âł 1975 J. L. Barbosa
M. do Carmo
+ PDF Chat Pseudo-Anosov representatives of stable Hamiltonian structures 2024 Jonathan Zung
+ On $\mathbb{Z}_2$-Thurston norms and pseudo-horizontal surfaces in orientable Seifert $3$-manifolds 2021 Xiaoming Du
+ PDF Chat The existence of arbitrary large number of non-$\mathbb R$-covered Anosov flows on hyperbolic $3$-manifolds 2024 François Béguin
Bin Yu

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors