Norm-inflation with Infinite Loss of Regularity for Periodic NLS Equations in Negative Sobolev Spaces

Type: Article

Publication Date: 2017-01-01

Citations: 18

DOI: https://doi.org/10.24033/bsmf.2749

Abstract

In this paper we consider Schrödinger equations with nonlinearities of odd order 2σ + 1 on T d .We prove that for σd 2, they are strongly illposed in the Sobolev space H s for any s < 0, exhibiting norm-inflation with infinite loss of regularity.In the case of the one-dimensional cubic nonlinear Schrödinger equation and its renormalized version we prove such a result for H s with s < -2/3.

Locations

  • arXiv (Cornell University) - View - PDF
  • Zenodo (CERN European Organization for Nuclear Research) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View
  • Bulletin de la Société mathématique de France - View

Similar Works

Action Title Year Authors
+ PDF Chat Norm-inflation for periodic NLS equations in negative Sobolev spaces 2015 Rémi Carles
Thomas Kappeler
+ A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces 2015 Tadahiro Oh
+ A remark on norm inflation with general initial data for the cubic nonlinear Schr\"odinger equations in negative Sobolev spaces 2015 Tadahiro Oh
+ PDF Chat A Remark on Norm Inflation with General Initial Data for the Cubic Nonlinear Schr&amp;ouml;dinger Equations in Negative Sobolev Spaces 2017 Tadahiro Oh
+ A remark on norm inflation for nonlinear Schrödinger equations 2018 Nobu Kishimoto
+ PDF Chat A remark on norm inflation for nonlinear Schrödinger equations 2018 Nobu Kishimoto
+ Strong ill-posedness for fractional Hartree and cubic NLS Equations 2021 Divyang G. Bhimani
Saikatul Haque
+ PDF Chat Norm inflation for a higher-order nonlinear Schr\"odinger equation with a derivative on the circle 2024 Toshiki Kondo
Mamoru Okamoto
+ PDF Chat Norm Inflation for Nonlinear Schrödinger Equations in Fourier–Lebesgue and Modulation Spaces of Negative Regularity 2020 Divyang G. Bhimani
Rémi Carles
+ Norm inflation for nonlinear Schrodinger equations in negative Fourier-Lebesgue and modulation spaces 2020 Divyang G. Bhimani
Rémi Carles
+ Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line 2016 Antoine Choffrut
Oana Pocovnicu
+ PDF Chat Strong ill-posedness for fractional Hartree and cubic NLS equations 2023 Divyang G. Bhimani
Saikatul Haque
+ On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle 2015 Tadahiro Oh
Yuzhao Wang
+ PDF Chat Ill-Posedness of the Cubic Nonlinear Half-Wave Equation and Other Fractional NLS on the Real Line 2016 Antoine Choffrut
Oana Pocovnicu
+ Norm inflation for the derivative nonlinear Schrödinger equation 2024 Yuzhao Wang
Younes Zine
+ A remark on norm inflation for nonlinear wave equations 2019 Justin Forlano
Mamoru Okamoto
+ PDF Chat A remark on norm inflation for nonlinear wave equations 2020 Justin Forlano
Mamoru Okamoto
+ Norm inflation for the derivative nonlinear Schrödinger equation 2022 Yuzhao Wang
Younes Zine
+ Ill-posedness of quintic fourth order Schrödinger equation 2022 Bo Xia
Deng Zhang
+ The Schrödinger equation with cubic nonlinearities on the half-line in low regularity spaces 2024 A. Alexandrou Himonas
Fangchi Yan