High-frequency bounds for the Helmholtz equation under parabolic trapping and applications in numerical analysis

Type: Preprint

Publication Date: 2017-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1708.08415

Locations

  • UCL Discovery (University College London) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • CentAUR (University of Reading) - View - PDF
  • Pure (University of Bath) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ High-frequency bounds for the Helmholtz equation under parabolic trapping and applications in numerical analysis 2017 Simon N. Chandler‐Wilde
Euan A. Spence
A. Gibbs
V. P. Smyshlyaev
+ PDF Chat High-frequency Bounds for the Helmholtz Equation Under Parabolic Trapping and Applications in Numerical Analysis 2020 Simon N. Chandler‐Wilde
Euan A. Spence
Andrew Gibbs
V. P. Smyshlyaev
+ Applying GMRES to the Helmholtz equation with strong trapping: how does the number of iterations depend on the frequency? 2021 Pierre Marchand
Jeffrey Galkowski
A. Spence
Euan A. Spence
+ Applying GMRES to the Helmholtz equation with strong trapping: how does the number of iterations depend on the frequency?. 2021 Pierre Marchand
Jeffrey Galkowski
A. Spence
Euan A. Spence
+ For most frequencies, strong trapping has a weak effect in frequency-domain scattering 2019 David Lafontaine
Euan A. Spence
Jared Wunsch
+ PDF Chat The geometric error is less than the pollution error when solving the high-frequency Helmholtz equation with high-order FEM on curved domains 2024 Théophile Chaumont-Frelet
Euan A. Spence
+ PDF Chat Applying GMRES to the Helmholtz equation with strong trapping: how does the number of iterations depend on the frequency? 2022 Pierre Marchand
Jeffrey Galkowski
Euan A. Spence
A. Spence
+ For most frequencies, strong trapping has a weak effect in frequency-domain scattering 2019 David Lafontaine
Euan A. Spence
Jared Wunsch
+ Eigenvalues of the truncated Helmholtz solution operator under strong trapping 2021 Jeffrey Galkowski
Pierre Marchand
Euan A. Spence
+ "Domain-of-dependence" Bounds and Time Decay of Solutions of the Wave Equation 2020 Thomas G. Anderson
Oscar P. Bruno
+ PDF Chat Helmholtz quasi-resonances are unstable under most single-signed perturbations of the wave speed 2024 Euan A. Spence
Jared Wunsch
Yuzhou Zou
+ PDF Chat ASYMPTOTICAL METHODS FOR HELMHOLTZ OR NAVIER-STOKES TYPE EQUATIONS 2011 Aurélien Klak
+ High-frequency estimates on boundary integral operators for the Helmholtz exterior Neumann problem 2021 Jeffrey Galkowski
Pierre Marchand
Euan A. Spence
+ PDF Chat Optimal constants in nontrapping resolvent estimates and applications in numerical analysis 2019 Jeffrey Galkowski
Euan A. Spence
Jared Wunsch
+ The Helmholtz Equation in Unbounded Domains 1989 J. Sanchez Hubert
E. Sanchez Palencia
+ PDF Chat Besov estimates in the high-frequency Helmholtz equation, for a non-trapping and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>C</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> potential 2006 François Castella
Thierry Jecko
+ Decompositions of high-frequency Helmholtz solutions via functional calculus, and application to the finite element method 2021 Jeffrey Galkowski
David Lafontaine
Euan A. Spence
Jared Wunsch
+ Numerical methods for Helmholtz-type equations in unbounded regions 2008 Charles I. Goldstein
+ PDF Chat Does the Helmholtz Boundary Element Method Suffer from the Pollution Effect? 2023 Jeffrey Galkowski
Euan A. Spence
+ "Bootstrap Domain of Dependence": Bounds and Time Decay of Solutions of the Wave Equation 2020 Thomas G. Anderson
Oscar P. Bruno

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors