Higher dimensional Lemniscates: the geometry of $r$ particles in $n$-space with logarithmic potentials

Type: Preprint

Publication Date: 2015-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1506.01919

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Higher dimensional Lemniscates: the geometry of $r$ particles in $n$-space with logarithmic potentials 2015 Ingrid Bauer
Fabrizio Catanese
Antonio J. Di Scala
+ PDF Chat Higher dimensional Lemniscates: the geometry of r particles in n-space with logarithmic potentials 2017 Ingrid Bauer
Fabrizio Catanese
Antonio J. Di Scala
+ HIGHER DIMENSIONAL LEMNISCATES: r PARTICLES IN n-SPACE WITH LOGARITHMIC POTENTIALS 2015 Ingrid Bauer
Fabrizio Catanese
+ PDF Chat None 2023 Peter D Dragnev
Oleg R. Musin
+ PDF Chat Minimal Energy Point Systems on the Unit Circle and the Real Line 2020 Marcell Gaál
BĂ©la Nagy
Zsuzsanna Nagy-Csiha
Szilárd Gy. Révész
+ Minimal energy point systems on the unit circle and the real line 2019 Marcell Gaál
BĂ©la Nagy
Zsuzsanna Nagy-Csiha
Szilárd Gy. Révész
+ Minimal energy point systems on the unit circle and the real line 2019 Marcell Gaál
BĂ©la Sz.-Nagy
Zsuzsanna Nagy-Csiha
Szilárd Gy. Révész
+ Log-optimal configurations on the sphere 2015 Peter D Dragnev
+ PDF Chat Log-optimal Configurations on the Sphere 2016 Peter D Dragnev
+ PDF Chat Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere 2016 Laurent BĂ©termin
Étienne Sandier
+ Nondegenerate Critical Points: The Morse Lemma 2019 Domenico P. L. Castrigiano
Sandra Hayes
+ Dynamics of threshold solutions for energy critical NLS with inverse square potential 2020 Kai Yang
Chongchun Zeng
Xiaoyi Zhang
+ PDF Chat On Equilibrium Points of Logarithmic and Newtonian Potentials 1993 J. G. Clunie
Alexandre Erëmenko
John Rossi
+ The Coulomb problem 2012 M. I. Katsnelson
+ Morse Functions and Nondepraved Critical Points 1988 Mark Goresky
Robert MacPherson
+ Minimax Principles, Hardy-Dirac Inequalities, and Operator Cores for Two and Three Dimensional Coulomb-Dirac Operators 2016 David MĂĽller
+ PDF Chat Collapse of inelastic hard spheres in dimension $d \geq 2$ 2024 Théophile Dolmaire
Juan J. L. Velázquez
+ Point sets of minimal energy 2014 Peter J. Grabner
+ Log-optimal (d+2)-configurations in d-dimensions 2019 Peter D Dragnev
Oleg R. Musin
+ PDF Chat Thomson problem in one dimension: Minimal energy configurations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e693" altimg="si93.gif"><mml:mi>N</mml:mi></mml:math> charges on a curve 2018 Paolo Amore
Martin Jacobo

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors