An improved bound on the Hausdorff dimension of Besicovitch sets in $\mathbb{R}^3$

Type: Preprint

Publication Date: 2017-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1704.07210

Locations

  • arXiv (Cornell University) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ An improved bound on the Hausdorff dimension of Besicovitch sets in $\mathbb{R}^3$ 2017 Nets Hawk Katz
Joshua Zahl
+ An $L^{4/3}$ $SL_2$ Kakeya maximal inequality 2023 Terence L. J. Harris
+ A Kakeya maximal function estimate in four dimensions using planebrushes 2019 Nets Hawk Katz
Joshua Zahl
+ A Kakeya maximal function estimate in four dimensions using planebrushes 2019 Nets Hawk Katz
Joshua Zahl
+ PDF Chat An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension 2001 Izabella Łaba
Terence Tao
+ An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension 2000 Izabella Łaba
Terence Tao
+ PDF Chat Some Results in Support of the Kakeya Conjecture 2017 Jonathan M. Fraser
Olson
Robinson
+ Some results in support of the Kakeya Conjecture 2014 Jonathan M. Fraser
Eric J. Olson
James C. Robinson
+ Some results in support of the Kakeya Conjecture 2014 Jonathan M. Fraser
Eric J. Olson
James C. Robinson
+ An improved bound on the Minkowski dimension of Besicovitch sets in R^3 1999 Nets Hawk Katz
Izabella Łaba
Terence Tao
+ PDF Chat A Kakeya maximal function estimate in four dimensions using planebrushes 2020 Nets Hawk Katz
Joshua Zahl
+ PDF Chat On some variants of the Kakeya problem 1999 Lawrence A. Kolasa
Thomas Wolff
+ PDF Chat An Improved Bound on the Minkowski Dimension of Besicovitch Sets in ℝ 3 2000 Nets Hawk Katz
Izabella Łaba
Terence Tao
+ An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³ 2018 Nets Hawk Katz
Joshua Zahl
+ New bounds on Kakeya problems 2001 Nets Hawk Katz
Terence Tao
+ The Kakeya Needle Problem and Besikovitch Set ( With Idea of Exhibit for Mathematics Of The Planet Earth ) TIFR VSRP Project Report 2013 Debashis Chatterjee
+ Marstrand type slicing statements in $\mathbb{Z}^{2}\subset \mathbb{R}^{2}$ are false for the counting dimension 2020 Aritro Pathak
+ Marstrand type slicing statements in $\mathbb{Z}^{2}\subset \mathbb{R}^{2}$ are false for the counting dimension 2020 Aritro Pathak
+ $(n,k)$-Besicovitch sets do not exist in $\mathbb{Z}_p^n$ and $\hat{\mathbb{Z}}^n$ for $k\ge 2$ 2023 Manik Dhar
+ On the generalized Hausdorff dimension of Besicovitch sets 2023 Xianghong Chen
Lixin Yan
Yue Zhong

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat A discretized Severi-type theorem with applications to harmonic analysis 2018 Joshua Zahl