A pretentious proof of Linnik's estimate for primes in arithmetic progressions

Type: Preprint

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2209.14538

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat A pretentious proof of Linnik's estimate for primes in arithmetic progressions 2023 Stelios Sachpazis
+ On the existence of products of primes in arithmetic progressions 2022 Barnabás Szabó
+ PDF Chat Pretentious multiplicative functions and the prime number theorem for arithmetic progressions 2013 Dimitris Koukoulopoulos
+ PDF Chat On the existence of products of primes in arithmetic progressions 2024 Barnabás Szabó
+ Primes in arithmetic progressions to large moduli III: Uniform residue classes 2020 James Maynard
+ Squarefree integers in large arithmetic progressions 2016 Ramon M. Nunes
+ PDF Chat A variant of the prime number theorem 2021 Kui Liu
Jie Wu
Zhishan Yang
+ A variant of the prime number theorem 2021 Kui Liu
Jie Wu
Zhishan Yang
+ Divisor problem in arithmetic progressions modulo a prime power 2016 Kui Liu
Igor E. Shparlinski
Tianping Zhang
+ An extension of Furstenberg's theorem of the infinitude of primes 2020 Frank Vega
+ Multiplicative functions in short arithmetic progressions 2019 Oleksiy Klurman
Alexander P. Mangerel
Joni Teräväinen
+ Pretentious multiplicative functions and an inequality for the zeta-function 2006 Andrew Granville
K. Soundararajan
+ PDF Chat Pretentious multiplicative functions and an inequality for the zeta-function 2008 Andrew Granville
K. Soundararajan
+ Variants of Korselt's Criterion 2014 Thomas Wright
+ Variants of Korselt's Criterion 2014 Thomas Wright
+ PDF Chat The Green-Tao theorem: an exposition 2014 David Conlon
Jacob Fox
Yufei Zhao
+ PDF Chat A new proof of Halász’s theorem, and its consequences 2018 Andrew Granville
Adam J. Harper
K. Soundararajan
+ A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions 2004 Andrew Vlasic
+ An estimate for a certain sum extended over the primes of an arithmetical progression 1969 Igor Vinogradov
+ Multiplicative functions in large arithmetic progressions and applications 2020 Étienne Fouvry
Gérald Tenenbaum

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors