Global well-posedness for the derivative nonlinear Schrödinger equation

Type: Preprint

Publication Date: 2020-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2012.01923

Locations

  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2022 Hajer Bahouri
Galina Perelman
+ PDF Chat Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ PDF Chat Global well-posedness for the derivative nonlinear Schr\"odinger equation 2022 Hajer Bahouri
Galina Perelman
+ Global well-posedness for the derivative nonlinear Schr\"{o}dinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ PDF Chat Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$ 2016 Zihua Guo
Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^{2}(\R)$ 2024 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yifei Wu
+ PDF Chat Global well-posedness for the generalized derivative nonlinear Schr\"odinger equation 2021 Ben Pineau
Mitchell A. Taylor
+ Global well-posedness of the derivative nonlinear Schr\"odinger equation with periodic boundary condition in $H^{\frac12}$ 2016 Răzvan Moşincat
+ Global well-posedness for the generalized derivative nonlinear Schrödinger equation 2021 Ben Pineau
Mitchell A. Taylor
+ Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in $H^{\frac12}$ 2016 Răzvan Moşincat
+ Global Well-Posedness on a generalized derivative nonlinear Schr\"odinger equation 2016 Noriyoshi Fukaya
Masayuki Hayashi
Takahisa Inui
+ PDF Chat Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities 2020 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
+ PDF Chat Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yi Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^2(\mathbb{R})$ 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation 2023 Rana Badreddine
+ The Derivative Nonlinear Schr\"{o}dinger Equation: Global Well-Posedness and Soliton Resolution 2019 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
+ The Derivative Nonlinear Schrödinger Equation: Global Well-Posedness and Soliton Resolution 2019 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
+ On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions 2021 Phan van Tin

Works Cited by This (0)

Action Title Year Authors