A Tutorial on Sparse Gaussian Processes and Variational Inference

Type: Preprint

Publication Date: 2020-01-01

Citations: 17

DOI: https://doi.org/10.48550/arxiv.2012.13962

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Tutorial on Sparse Gaussian Processes and Variational Inference 2020 Felix Leibfried
Vincent Dutordoir
St. John
Nicolas Durrande
+ Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations 2020 Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyang Shen
Maurizio Filippone
+ PDF Chat Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations 2020 Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyang Shen
Maurizio Filippone
+ Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models - a Gentle Tutorial 2014 Yarin Gal
Mark van der Wilk
+ Variational Inference in the Gaussian Process Latent Variable Model and Sparse GP Regression -- a Gentle Tutorial 2014 Yarin Gal
Mark van der Wilk
+ Input Dependent Sparse Gaussian Processes 2021 Bahram Jafrasteh
Carlos Villacampa-Calvo
Daniel Hernández-Lobato
+ Sparse-posterior Gaussian Processes for general likelihoods 2012 Yuan
Qi
Ahmed H. Abdel-Gawad
Thomas P. Minka
+ Structured Variational Inference for Coupled Gaussian Processes 2017 Vincent Adam
+ Understanding Probabilistic Sparse Gaussian Process Approximations 2016 Matthias Bauer
Mark van der Wilk
Carl Edward Rasmussen
+ Understanding Probabilistic Sparse Gaussian Process Approximations 2016 Matthias Bauer
Mark van der Wilk
Carl Edward Rasmussen
+ Regularized Sparse Gaussian Processes 2019 Rui Meng
Herbert K. H. Lee
Braden Soper
Priyadip Ray
+ Variational Inference for Gaussian Process Models with Linear Complexity 2017 Ching-An Cheng
Byron Boots
+ Sparse within Sparse Gaussian Processes using Neighbor Information 2020 Gia-Lac Tran
Dimitrios Milios
Pietro Michiardi
Maurizio Filippone
+ Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference 2022 Vidhi Lalchand
Aditya Ravuri
Neil D. Lawrence
+ A Coreset-based, Tempered Variational Posterior for Accurate and Scalable Stochastic Gaussian Process Inference 2023 Mert Ketenci
Adler Perotte
Noémie Elhadad
Iñigo Urteaga
+ Quadruply Stochastic Gaussian Processes 2020 Trefor W. Evans
Prasanth B. Nair
+ PDF Chat Amortized Variational Inference for Deep Gaussian Processes 2024 Qingfang Meng
Yongyou Zhang
+ Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression 2019 Tong Teng
Jie Chen
Yehong Zhang
Kian Hsiang Low
+ PDF Chat Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression 2020 Tong Teng
Jie Chen
Yehong Zhang
Bryan Kian Hsiang Low
+ Sparse Orthogonal Variational Inference for Gaussian Processes 2019 Jiaxin Shi
Michalis K. Titsias
Andriy Mnih

Works Cited by This (0)

Action Title Year Authors