Nonlinear smoothing for the periodic generalized nonlinear Schrödinger equation

Type: Article

Publication Date: 2022-09-23

Citations: 3

DOI: https://doi.org/10.1016/j.jde.2022.09.017

Locations

  • Journal of Differential Equations - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Non-linear Smoothing for the Periodic Generalized Non-linear Schrödinger Equation 2022 Ryan McConnell
+ PDF Chat Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrödinger equation 2022 Bradley Isom
Dionyssios Mantzavinos
Atanas Stefanov
+ Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations 1998 Carlos E. Kenig
Gustavo Ponce
Luis Vega
+ PDF Chat Periodic nonlinear Schrödinger equation and invariant measures 1994 Jean Bourgain
+ Local Smoothing Effects of Solutions to Nonlinear Schrodinger Equations 2000 能久 中村
+ Smoothing properties for systems of nonlinear Schrödinger equations 2001 Edson Lueders
+ PDF Chat On the wellposedness of periodic nonlinear Schrödinger equations with white noise dispersion 2023 Gavin Stewart
+ PDF Chat Finite time blowup for a supercritical defocusing nonlinear Schrödinger system 2017 Terence Tao
+ Periodic solutions of nonlinear Schrödinger equations 1989 Michael Kastenholz
Horst Lange
Dirk Nieder
+ PDF Chat On Nonlinear Schrödinger-Type Equations with Nonlinear Damping 2013 Paolo Antonelli
Rémi Carles
Christof Sparber
+ Smoothing for the fractional Schrodinger equation on the torus and the real line 2017 M. Burak Erdoğan
T.B. Gürel
Nikolaos Tzirakis
+ On the probabilistic well-posedness of the nonlinear Schr\"{o}dinger equations with non-algebraic nonlinearities 2017 Tadahiro Oh
Mamoru Okamoto
Oana Pocovnicu
+ The Defocusing Energy-Supercritical Nonlinear Schrödinger Equation in High Dimensions 2022 J. Li
Kuijie Li
+ On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities 2017 Tadahiro Oh
Mamoru Okamoto
Oana Pocovnicu
+ PDF Chat Nonlinearity management in higher dimensions 2005 P. G. Kevrekidis
Dmitry E. Pelinovsky
Atanas Stefanov
+ Nonsqueezing for the cubic nonlinear Klein-Gordon equation on $\mathbb{T}^3$ 2014 Dana Mendelson
+ Spatial-temporal complexity in nonlinear Schrödinger equations 1999 Yu Tan
+ PDF Chat Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L2(T) 2012 J. Colliander
Tadahiro Oh
+ Symplectic non-squeezing for the cubic nonlinear Klein-Gordon equation on $\mathbb{T}^3$ 2014 Dana Mendelson
+ Symplectic non-squeezing for the cubic nonlinear Klein-Gordon equation on $\mathbb{T}^3$ 2014 Dana Mendelson