Property (m) under perturbations

Type: Article

Publication Date: 2018-04-16

Citations: 1

DOI: https://doi.org/10.56947/gjom.v6i1.119

View Chat PDF

Abstract

A Banach space operator is said to be obeys property (m) if the isolated points of the spectrum σ(T) of T which are eigenvalues of finite multiplicity are exactly those points λ of the spectrum for which T - λ is an upper semi-Browder. In this article, we study the stability of property (m), for a bounded operator acting on a Banach space, under perturbation by finite rank operators, by nilpotent operators, quasi-nilpotent operators, Riesz operator or algebraic operators commuting with T.

Locations

  • Gulf Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Property<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>w</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>and perturbations 2007 Pietro Aiena
Maria Teresa Biondi
+ Property $(aw)$ and perturbations 2013 M. H. M. Rashid
+ PDF Chat A Note on Property<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:mi>b</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>and Perturbations 2012 Qingping Zeng
Huaijie Zhong
+ Property (w) for perturbations of polaroid operators 2008 Pietro Aiena
Jesús R. Guillén
Pedro Peña
+ PDF Chat Property $$(UW{\scriptstyle \Pi })$$ under perturbations 2019 Pietro Aiena
M. Kachad
+ On the Kato, semi-regular and essentially semi-regular spectra 2014 Mohammed Benharrat
Aymen Ammar
Aref Jeribi
Bekkai Messirdi
+ Perturbations of spectra and property (R) for upper triangular operator matrices 2022 Lili Yang
Xiaohong Cao
+ PDF Chat Completeness of rank one perturbations of normal operators with lacunary spectrum 2018 Anton Baranov
Dmitry V. Yakubovich
+ PDF Chat A new variation of Weyl type theorems and perturbations 2014 Junli Shen
Alatancang Chen
+ Rank-one perturbations of quasinilpotent operators and the invariant subspace problem 2018 Adi Tcaciuc
+ Generalized property ( ω') of finite rank perturbations of operators 2011 Jun Liu
+ PROPERTY (Bgw) AND PERTURBATIONS 2014 M. H. M. Rashid
T‎. Prasad
+ Perturbation of Spectrums of a Class of Operator Matrices 2010 L Zhang
+ Perturbations of self-adjoint operators in semifinite von Neumann algebras: Kato-Rosenblum theorem 2017 Qihui Li
Junhao Shen
Rui Shi
Liguang Wang
+ PDF Chat Spectral analysis for finite rank perturbation of diagonal operator in non-archimedean Banach space of countable type 2022 Abdelkhalek El Amrani
Aziz Blali
Mohamed Amine Taybi
+ PDF Chat Characterization of essential spectra by quasi-compact perturbations 2022 Faiçal Abdmouleh
Hamadi Chaâben
Ines Walha
+ Spectral description of Fredholm operators via polynomially Riesz operators perturbation 2022 Faiçal Abdmouleh
Hassen Khlif
Ines Walha
+ Property (gb) and perturbations 2011 M. H. M. Rashid
+ PDF Chat Analyticity, rank one perturbations and the invariance of the left spectrum 2023 Sameer Chavan
Soumitra Ghara
Paramita Pramanick
+ Operator theory and stability 1972 R. Saeks