Existence, stability and asymptotic behaviour of normalized solutions for the Davey-Stewartson system

Type: Article

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.3934/dcds.2022132

Abstract

<p style='text-indent:20px;'>In this paper, we undertake a comprehensive study for existence, stability and asymptotic behaviour of normalized solutions for the Davey-Stewartson system <p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta u+\omega u = a|u|^{p}u +E_1(|u|^{2})u\; \; \; in\; \mathbb{R}^2\; or \; \mathbb{R}^3,\;\;\;\;\;\;{\rm{(DS)}} $\end{document} </tex-math></disp-formula> <p style='text-indent:20px;'>which appears in the description of the evolution of surface water waves. In the case of <inline-formula><tex-math id="M7">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-critical case, i.e., <inline-formula><tex-math id="M8">\begin{document}$ N = 2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ a&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ 0&lt;p&lt;2 $\end{document}</tex-math></inline-formula>, we show that normalized ground states blow up as <inline-formula><tex-math id="M11">\begin{document}$ c \nearrow c^*: = \|R\|^2_{L^2} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M12">\begin{document}$ R $\end{document}</tex-math></inline-formula> is the ground state solution to equation (DS) with <inline-formula><tex-math id="M13">\begin{document}$ a = 0 $\end{document}</tex-math></inline-formula>. We then give a detailed description for the asymptotic behavior of normalized ground states as <inline-formula><tex-math id="M14">\begin{document}$ c \nearrow c^* $\end{document}</tex-math></inline-formula>. In the case of <inline-formula><tex-math id="M15">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-supercritical case, i.e., <inline-formula><tex-math id="M16">\begin{document}$ N = 3 $\end{document}</tex-math></inline-formula>, we prove several existence and stability/instability results. We also give new criteria about global existence and blow-up for the associated evolutional equation.

Locations

  • Discrete and Continuous Dynamical Systems - View - PDF

Similar Works

Action Title Year Authors
+ Diverse exact solutions to Davey–Stewartson model using modified extended mapping method 2024 Karim K. Ahmed
Hamdy M. Ahmed
Niveen Badra
Mohammad Mirzazadeh
Wafaa B. Rabie
Mostafa Eslami
+ PDF Chat A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$ 2016 Shi‐Ming Li
Yongsheng Li
Wei Yan
+ PDF Chat Constructing new wave solutions to the $$(2 + 1)$$-dimensional Davey–Stewartson equation (DSE) which arises in fluid dynamics 2019 Abdelfattah El Achab
+ Sharp Threshold of Global Existence and Instability of Standing Wave for a Davey-Stewartson System 2008 Zaihui Gan
Jian Zhang
+ New and more fractional soliton solutions related to generalized Davey–Stewartson equation using oblique wave transformation 2021 Nauman Raza
Saima Arshed
K. A. Khan
Dumitru Băleanu
+ Propagation of solitary wave solutions to (4+1)-dimensional Davey–Stewartson–Kadomtsev–Petviashvili equation arise in mathematical physics and stability analysis 2024 M.A. El‐Shorbagy
Sonia Akram
Mati ur Rahman
+ Soliton solutions of nonlinear coupled Davey–Stewartson Fokas system using modified auxiliary equation method and extended $$(G'/G^{2})$$-expansion method 2024 M. Atta Ullah Khan
Maasoomah Sadaf
Ghazala Akram
Asnake Birhanu
Kashif Rehan
Y. S. Hamed
+ Blowing-up of solutions of a class of Davey-Stewartson systems 2002 Emil Minchev
+ Standing waves of the Davey – Stewartson system 2003 CC Mak
KW Chow
+ Stability of standing waves for the generalized Davey-Stewartson system 1994 Masahito Ohta
+ Investigation of shallow water waves and solitary waves to the conformable 3D-WBBM model by an analytical method 2021 Muhammad Bilal
Shafqat-Ur-Rehman
Usman Younas
Hacı Mehmet BaƟkonuƟ
Muhammad Younis
+ Sharp threshold of global existence for the generalized Davey-Stewartson system in $R^2$ 2009 Zaihui Gan
Boling Guo
Jian Zhang
+ Soliton solutions of coupled resonant Davey-Stewartson system and modulation instability analysis 2023 Ismail Onder
Aydın Seçer
Mustafa Bayram
+ Approximate Numerical solutions for the nonlinear dispersive shallow water waves as the Fornberg–Whitham model equations 2021 Hijaz Ahmad
Aly R. Seadawy
Abdul Hamid Ganie
Saima Rashid
Tufail A. Khan
Hanaa Abu-Zinadah
+ Applicable symbolic computations on dynamics of small-amplitude long waves and Davey–Stewartson equations in finite water depth 2018 Ehab S. Selima
Yadan Mao
Xiaohua Yao
Adel M. Morad
Talaat Abdelhamid
Basem I. Selim
+ PDF Chat Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)-dimensional shallow water waves model 2021 Yu‐Ming Chu
Mostafa M. A. Khater
Y. S. Hamed
+ EXACT THEORY OF EXISTENCE AND STABILITY FOR TWO- AND THREE-DIMENSIONAL SOLITARY WAVES 2010 Shu-Ming Sun
+ Global Solutions and Self-similar Solutions for Generalized Davey-Stewartson System 2007 Xiangqing Zhao
+ PDF Chat New exact and numerical solutions for the KdV system arising in physical applications 2021 M‎. ‎B‎. Almatrafi
Abdulghani Alharbi
Mahmoud A. E. Abdelrahman
+ PDF Chat Abundant Traveling Wave and Numerical Solutions of Weakly Dispersive Long Waves Model 2021 Li Wu
Lanre Akinyemi
Dianchen Lu
Mostafa M. A. Khater

Works That Cite This (0)

Action Title Year Authors