Type: Article
Publication Date: 2022-09-13
Citations: 6
DOI: https://doi.org/10.1112/blms.12727
We investigate the distortion of Assouad dimension and the Assouad spectrum under Euclidean quasiconformal maps. Our results complement existing conclusions for Hausdorff and box-counting dimension due to Gehring–Väisälä and others. As an application, we classify polynomial spirals S a : = { x − a e i x : x > 0 } $S_a:=\lbrace x^{-a}e^{{\mathbf {i}} x}:x>0\rbrace$ up to quasiconformal equivalence, up to the level of the dilatation. Specifically, for a > b > 0 $a>b>0$ we show that there exists a quasiconformal map f $f$ of C $\mathbb {C}$ with dilatation K f $K_f$ and f ( S a ) = S b $f(S_a)=S_b$ if and only if K f ⩾ a b $K_f \geqslant \tfrac{a}{b}$ .