SafeNet: The Unreasonable Effectiveness of Ensembles in Private Collaborative Learning

Type: Preprint

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2205.09986

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat SafeNet: The Unreasonable Effectiveness of Ensembles in Private Collaborative Learning 2023 Harsh Chaudhari
Matthew Jagielski
Alina Oprea
+ FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks 2023 Jorge Castillo
Phillip Rieger
Hossein Fereidooni
Qian Chen
Ahmad Sadeghi
+ PDF Chat FLEDGE: Ledger-based Federated Learning Resilient to Inference and Backdoor Attacks 2023 Jorge Castillo
Phillip Rieger
Hossein Fereidooni
Qian Chen
Ahmad Reza Sadeghi
+ Adversarial Robustness Unhardening via Backdoor Attacks in Federated Learning 2023 Taejin Kim
Jiarui Li
Shubhranshu Singh
Nikhil Madaan
Carlee Joe‐Wong
+ PDF Chat UTrace: Poisoning Forensics for Private Collaborative Learning 2024 Evan Rose
Hidde Lycklama
Harsh Chaudhari
Anwar Hithnawi
Alina Oprea
+ Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer 2019 Hongyan Chang
Virat Shejwalkar
Reza Shokri
Amir Houmansadr
+ PDF Chat Helen: Maliciously Secure Coopetitive Learning for Linear Models 2019 Wenting Zheng
Raluca Ada Popa
Joseph E. Gonzalez
Ion Stoica
+ PDF Chat Investigating Privacy Attacks in the Gray-Box Setting to Enhance Collaborative Learning Schemes 2024 Federico Mazzone
Ahmad Al Badawi
Yuriy Polyakov
Maarten H. Everts
Florian Hahn
Peter Andreas
+ Helen: Maliciously Secure Coopetitive Learning for Linear Models 2019 Wenting Zheng
Raluca Ada Popa
Joseph E. Gonzalez
Ion Stoica
+ PDF Chat Reaching Data Confidentiality and Model Accountability on the CalTrain 2019 Zhongshu Gu
Hani Jamjoom
Dong Su
Heqing Huang
Jialong Zhang
Tengfei Ma
Dimitrios Pendarakis
Ian Molloy
+ LightSecAgg: Rethinking Secure Aggregation in Federated Learning 2021 Chien-Sheng Yang
Jinhyun So
Chaoyang He
Songze Li
Qian Yu
Salman Avestimehr
+ PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 2020 Yanjun Zhang
Guangdong Bai
Xue Li
Caitlin Curtis
Chen Chen
Ryan K. L. Ko
+ Mitigating Membership Inference Attacks by Self-Distillation Through a Novel Ensemble Architecture 2021 Xinyu Tang
Saeed Mahloujifar
Liwei Song
Virat Shejwalkar
Milad Nasr
Amir Houmansadr
Prateek Mittal
+ Differentially Private and Adversarially Robust Machine Learning: An Empirical Evaluation 2024 Janvi Thakkar
Giulio Zizzo
Sergio Maffeis
+ FLGUARD: Secure and Private Federated Learning 2021 Thien Duc Nguyen
Phillip Rieger
Hossein Yalame
Helen Möllering
Hossein Fereidooni
Samuel Marchal
Markus Miettinen
Azalia Mirhoseini
Ahmad‐Reza Sadeghi
Thomas Schneider
+ PDF Chat Lightweight Federated Learning with Differential Privacy and Straggler Resilience 2024 Shu Hong
Xiaojun Lin
Lingjie Duan
+ PDF Chat A Hybrid Approach to Privacy-Preserving Federated Learning 2019 Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
+ A Hybrid Approach to Privacy-Preserving Federated Learning 2018 Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
+ Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets 2022 Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
+ SEDML: Securely and Efficiently Harnessing Distributed Knowledge in Machine Learning 2021 Yansong Gao
Qun Li
Yifeng Zheng
Guohong Wang
Jiannan Wei
Mang Su

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors