Wavenumber-explicit stability and convergence analysis of ℎ𝑝 finite element discretizations of Helmholtz problems in piecewise smooth media

Type: Article

Publication Date: 2024-03-29

Citations: 2

DOI: https://doi.org/10.1090/mcom/3958

Locations

  • Mathematics of Computation - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Wavenumber-explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers 2021 Théophile Chaumont-Frelet
Dietmar Gallistl
Serge Nicaise
Jérôme Tomezyk
+ Wavenumber-explicit convergence of the $hp$-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients 2020 David Lafontaine
Euan A. Spence
Jared Wunsch
+ Wavenumber-explicit convergence of the hp-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients 2022 D. Lafontaine
Euan A. Spence
Jared Wunsch
+ Exponentially convergent multiscale methods for high frequency heterogeneous Helmholtz equations 2021 Yifan Chen
Thomas Y. Hou
Yixuan Wang
+ Exponentially convergent multiscale methods for high frequency heterogeneous Helmholtz equations. 2021 Yifan Chen
Thomas Y. Hou
Yixuan Wang
+ The $hp$-FEM applied to the Helmholtz equation with PML truncation does not suffer from the pollution effect 2022 Jeffrey Galkowski
David Lafontaine
Euan A. Spence
Jared Wunsch
+ Solvability of Discrete Helmholtz Equations 2021 Maximilian Bernkopf
Stefan Sauter
Céline Torres
Alexander Veit
+ Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation 2016 Hélène Barucq
Théophile Chaumont-Frelet
Christian Gout
+ Robust adaptive hp discontinuous Galerkin finite element methods for the Helmholtz equation 2018 Scott Congreve
Joscha Gedicke
Ilaria Perugia
+ Robust adaptive hp discontinuous Galerkin finite element methods for the Helmholtz equation 2018 Scott Congreve
Joscha Gedicke
Ilaria Perugia
+ PDF Chat Wavenumber Explicit Convergence of a Multiscale Generalized Finite Element Method for Heterogeneous Helmholtz Problems 2023 Chupeng Ma
Christian Alber
Robert Scheichl
+ PDF Chat Robust Adaptive $hp$ Discontinuous Galerkin Finite Element Methods for the Helmholtz Equation 2019 Scott Congreve
Joscha Gedicke
Ilaria Perugia
+ Wavenumber-explicit hp-FEM analysis for Maxwell's equations with impedance boundary conditions 2022 Jens Markus Melenk
Stefan Sauter
+ Analysis of the $hp$-version of a first order system least squares method for the Helmholtz equation 2018 Maximilian Bernkopf
Jens Markus Melenk
+ Numerical methods for Helmholtz-type equations in unbounded regions 2008 Charles I. Goldstein
+ PDF Chat Wavenumber Explicit Analysis for Galerkin Discretizations of Lossy Helmholtz Problems 2020 Jens Markus Melenk
Stefan Sauter
Céline Torres
+ PDF Chat On Edge Multiscale Space based Hybrid Schwarz Preconditioner for Helmholtz Problems with Large Wavenumbers 2024 Shubin Fu
Shihua Gong
Guanglian Li
Xu Wang
+ A hybrid approach to solve the high-frequency Helmholtz equation with source singularity 2017 Jun Fang
Jianliang Qian
Leonardo Zepeda-Núñez
Hongkai Zhao
+ Analysis of the $hp$-version of a first order system least squares method for the Helmholtz equation. 2018 Maximilian Bernkopf
Jens Markus Melenk
+ Wavenumber explicit convergence of a multiscale generalized finite element method for heterogeneous Helmholtz problems 2021 Chupeng Ma
Christian Alber
Robert Scheichl