Explicit Salem sets, Fourier restriction, and metric Diophantine approximation in the $p$-adic numbers

Type: Preprint

Publication Date: 2017-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1708.05770

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Explicit Salem sets, Fourier restriction, and metric Diophantine approximation in the $p$-adic numbers 2017 Robert Fraser
Kyle Hambrook
+ PDF Chat Explicit Salem sets, Fourier restriction, and metric Diophantine approximation in the<i>p</i>-adic numbers 2019 Robert Fraser
Kyle Hambrook
+ Explicit Salem sets and applications to metrical Diophantine approximation 2016 Kyle Hambrook
+ Explicit Salem sets and applications to metrical Diophantine approximation 2016 Kyle Hambrook
+ Explicit Salem sets and applications to metrical Diophantine approximation 2018 Kyle Hambrook
+ PDF Chat Non-Salem Sets in Metric Diophantine Approximation 2022 Kyle Hambrook
Han Yu
+ Explicit Salem sets in $\mathbb{R}^n$ 2019 Robert Fraser
Kyle Hambrook
+ Non-Salem sets in metric Diophantine approximation 2021 Kyle Hambrook
Yu Han
+ PDF Chat Non-Salem sets in multiplicative Diophantine approximation 2024 Bo Tan
Qing-Long Zhou
+ Salem Sets in the p-adics, the Fourier Restriction Phenomenon and Optimal Extension of the Hausdorff-Young Inequality 2009 C. Papadimitropoulos
+ PDF Chat Explicit Salem sets in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2023 Robert Fraser
Kyle Hambrook
+ PDF Chat Dimension of Diophantine approximation and applications 2024 L. Li
Bochen Liu
+ PDF Chat Quantitative Diophantine approximation and Fourier dimension of sets: Dirichlet non-improvable numbers versus well-approximable numbers 2024 Bo Tan
Qing-Long Zhou
+ PDF Chat Convolution Powers of Salem Measures With Applications 2016 Xianghong Chen
Andreas Seeger
+ Dispersion and Littlewood's conjecture 2023 Sam Chow
Niclas Technau
+ Sets of Salem type and sharpness of the $L^2$-Fourier restriction theorem 2013 Xianghong Chen
+ Fourier restriction and well-approximable numbers 2023 Robert Fraser
Kyle Hambrook
Donggeun Ryou
+ Dispersion and Littlewood's conjecture 2024 Sam Chow
Niclas Technau
+ PDF Chat Salem Sets with No Arithmetic Progressions 2016 Pablo Shmerkin
+ Salem sets without arithmetic progressions 2015 Pablo Shmerkin

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors