Type: Article
Publication Date: 2022-08-26
Citations: 9
DOI: https://doi.org/10.1515/crelle-2022-0044
Abstract We construct a pointwise Boutet de Monvel–Sjöstrand parametrix for the Szegő kernel of a weakly pseudoconvex three-dimensional CR manifold of finite type assuming the range of its tangential CR operator to be closed; thereby extending the earlier analysis of Christ. This particularly extends Fefferman’s boundary asymptotics of the Bergman kernel to weakly pseudoconvex domains in <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mi>ℂ</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> {\mathbb{C}^{2}} , in agreement with D’Angelo’s example. Finally, our results generalize a three-dimensional CR embedding theorem of Lempert.