Bergman–Szegő kernel asymptotics in weakly pseudoconvex finite type cases

Type: Article

Publication Date: 2022-08-26

Citations: 9

DOI: https://doi.org/10.1515/crelle-2022-0044

Abstract

Abstract We construct a pointwise Boutet de Monvel–Sjöstrand parametrix for the Szegő kernel of a weakly pseudoconvex three-dimensional CR manifold of finite type assuming the range of its tangential CR operator to be closed; thereby extending the earlier analysis of Christ. This particularly extends Fefferman’s boundary asymptotics of the Bergman kernel to weakly pseudoconvex domains in <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mi>ℂ</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> {\mathbb{C}^{2}} , in agreement with D’Angelo’s example. Finally, our results generalize a three-dimensional CR embedding theorem of Lempert.

Locations

  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Bergman-Szeg\H{o} kernel asymptotics in weakly pseudoconvex finite type cases 2020 Chin-Yu Hsiao
Nikhil Savale
+ Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in C^2 1996 Joe Kamimoto
+ Non-analytic Bergman and Szegö kernels for weakly pseudoconvex tube domains in $\mathbb C^2$ 2001 Joe Kamimoto
+ Szegő kernel asymptotics on some non-compact complete CR manifolds 2020 Chin-Yu Hsiao
George Marinescu
Wang Huan
+ PDF Chat The Bergman kernel on weakly pseudoconvex tube domains in $\mathbf {C}^2$ 1999 Joe Kamimoto
+ Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in C 1994 Noriyuki Nakazawa
+ PDF Chat Szegő Kernel Asymptotics on Complete Strictly Pseudoconvex CR Manifolds 2022 Chin-Yu Hsiao
George Marinescu
Huan Wang
+ The Log term in the Bergman and Szeg\H o kernels in strictly pseudoconvex domains in $\mathbb C^2$ 2016 Peter Ebenfelt
+ PDF Chat Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in $\mathbf{C}^2 $ 1990 Noriyuki Nakazawa
+ Logarithmic growth of the Bergman Kernel for weakly pseudoconvex domains in ?3 of finite type 1983 Gregor Herbort
+ PDF Chat The Log Term in the Bergman and Szegő Kernels in Strictly Pseudoconvex Domains in $\mathbb C^2$ 2018 Peter Ebenfelt
+ The Bergman kernel on certain weakly pseudoconvex domains 1995 Nicholas Watts Gebelt
+ PDF Chat Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ${\bf C}^2$ 1998 Joe Kamimoto
+ CR Invariants of Weight Five in the Bergman Kernel 1999 Kengo Hirachi
Gen Komatsu
Noriyuki Nakazawa
+ Szegö kernel asymptotic expansion on strongly pseudoconvex CR manifolds with $S^1$ action Hendrik Herrmann 2018 Chin Yu Hsiao
Xiaoshan Li
+ Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in C[2] 1994 則之 中澤
+ Algebraic Bergman kernels and finite type domains in $\mathbb{C}^2$ 2021 Peter Ebenfelt
Ming Xiao
Hang Xu
+ PDF Chat Algebraic Bergman kernels and finite type domains in $\mathbb{C}^2$ 2021 Peter Ebenfelt
Ming Xiao
Hang Xu
+ PDF Chat Szegö kernel asymptotic expansion on strongly pseudoconvex CR manifolds with S1 action 2018 Hartmut Herrmann
Chin-Yu Hsiao
Xiaoshan Li
+ Asymptotic analysis of the Bergman Kernel on weakly pseudoconvex domains(弱擬凸領域のベルグマン核に関する漸近解析) 1997 神本丈