Better prediction by use of co-data: Adaptive group-regularized ridge regression

Type: Preprint

Publication Date: 2014-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1411.3496

Locations

  • arXiv (Cornell University) - View - PDF
  • Duo Research Archive (University of Oslo) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Better prediction by use of co-data: Adaptive group-regularized ridge regression 2014 Mark A. van de Wiel
Tonje G. Lien
Wina Verlaat
Wessel N. van Wieringen
Saskia M. Wilting
+ PDF Chat Better prediction by use of co‐data: adaptive group‐regularized ridge regression 2015 Mark A. van de Wiel
Tonje G. Lien
Wina Verlaat
Wessel N. van Wieringen
Saskia M. Wilting
+ Flexible co-data learning for high-dimensional prediction 2020 Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
+ Flexible co-data learning for high-dimensional prediction 2020 Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
+ PDF Chat Flexible co‐data learning for high‐dimensional prediction 2021 Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
+ PDF Chat Guiding adaptive shrinkage by co-data to improve regression-based prediction and feature selection 2024 Mark A. van de Wiel
Wessel N. van Wieringen
+ Adaptive group-regularized logistic elastic net regression 2018 Magnus Münch
Carel F.W. Peeters
Aad van der Vaart
Mark A. van de Wiel
+ Adaptive group-regularized logistic elastic net regression. 2018 Magnus Münch
Carel F.W. Peeters
Aad van der Vaart
Mark A. van de Wiel
+ $\sigma$-Ridge: group regularized ridge regression via empirical Bayes noise level cross-validation 2020 Nikolaos Ignatiadis
Panagiotis Lolas
+ Adaptive group-regularized logistic elastic net regression 2019 Magnus Münch
Carel F.W. Peeters
Aad van der Vaart
Mark A. van de Wiel
+ $σ$-Ridge: group regularized ridge regression via empirical Bayes noise level cross-validation 2020 Nikolaos Ignatiadis
Panagiotis Lolas
+ Fast marginal likelihood estimation of penalties for group-adaptive elastic net 2021 Mirrelijn M. van Nee
Tim van de Brug
Mark A. van de Wiel
+ PDF Chat ecpc: an R-package for generic co-data models for high-dimensional prediction 2023 Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
+ Feature Selection via Co-regularized Sparse-Group Lasso 2016 Paula L. Amaral Santos
Sultan Imangaliyev
Klamer Schutte
Evgeni Levin
+ PDF Chat Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models 2020 Shaima Belhechmi
Riccardo De Bin
Federico Rotolo
Stefan Michiels
+ PDF Chat Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent 2020 Jan Klosa
Noah Simon
Pål O. Westermark
Volkmar Liebscher
Dörte Wittenburg
+ PDF Chat Improved high-dimensional prediction with Random Forests by the use of co-data 2017 Dennis E. te Beest
Steven W. Mes
Saskia M. Wilting
Ruud H. Brakenhoff
Mark A. van de Wiel
+ ecpc: An R-package for generic co-data models for high-dimensional prediction 2022 Mirrelijn M. van Nee
Lodewyk F.A. Wessels
Mark A. van de Wiel
+ The Bayesian group-Lasso for analyzing contingency tables 2009 Sudhir Raman
Thomas J. Fuchs
Peter J. Wild
Edgar Dahl
Volker Röth
+ PDF Chat Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer 2010 Jie Peng
Ji Zhu
Anna Bergamaschi
Wonshik Han
Dong‐Young Noh
Jonathan R. Pollack
Pei Wang

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors