Disparities in dermatology AI performance on a diverse, curated clinical image set

Type: Article

Publication Date: 2022-08-12

Citations: 164

DOI: https://doi.org/10.1126/sciadv.abq6147

Abstract

An estimated 3 billion people lack access to dermatological care globally. Artificial intelligence (AI) may aid in triaging skin diseases and identifying malignancies. However, most AI models have not been assessed on images of diverse skin tones or uncommon diseases. Thus, we created the Diverse Dermatology Images (DDI) dataset-the first publicly available, expertly curated, and pathologically confirmed image dataset with diverse skin tones. We show that state-of-the-art dermatology AI models exhibit substantial limitations on the DDI dataset, particularly on dark skin tones and uncommon diseases. We find that dermatologists, who often label AI datasets, also perform worse on images of dark skin tones and uncommon diseases. Fine-tuning AI models on the DDI images closes the performance gap between light and dark skin tones. These findings identify important weaknesses and biases in dermatology AI that should be addressed for reliable application to diverse patients and diseases.

Locations

Similar Works

Action Title Year Authors
+ Disparities in Dermatology AI Performance on a Diverse, Curated Clinical Image Set 2022 Roxana Daneshjou
Kailas Vodrahalli
Roberto A. Novoa
Melissa Jenkins
Weixin Liang
Veronica Rotemberg
Justin Ko
Susan M. Swetter
Elizabeth E. Bailey
Olivier Gevaert
+ Disparities in Dermatology AI: Assessments Using Diverse Clinical Images 2021 Roxana Daneshjou
Kailas Vodrahalli
Weixin Liang
Roberto A. Novoa
Melissa J. Jenkins
Veronica Rotemberg
Justin Ko
Susan M. Swetter
Elizabeth E. Bailey
Olivier Gevaert
+ PDF Chat Disparities in Dermatology AI: Assessments Using Diverse Clinical Images 2021 Roxana Daneshjou
Kailas Vodrahalli
Weixin Liang
Roberto A. Novoa
Melissa Jenkins
Veronica Rotemberg
Justin Ko
Susan M. Swetter
Elizabeth E. Bailey
Olivier Gevaert
+ PDF Chat Equitable Skin Disease Prediction Using Transfer Learning and Domain Adaptation 2024 Sajib Acharjee Dip
Kazi Hasan Ibn Arif
Uddip Acharjee Shuvo
Ishtiaque Ahmed Khan
Na Meng
+ PDF Chat Equitable Skin Disease Prediction Using Transfer Learning and Domain Adaptation 2024 Sajib Acharjee Dip
Kazi Hasan Ibn Arif
Uddip Acharjee Shuvo
Ishtiaque Ahmed Khan
Na Meng
+ DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In Machine-Assisted Skin Disease Detection 2024 Ming-Chang Chiu
Yingfei Wang
Yen-Ju Kuo
Pin‐Yu Chen
+ PDF Chat A General-Purpose Multimodal Foundation Model for Dermatology 2024 Siyuan Yan
Zhentao Yu
Clare A. Primiero
Cristina Vico‐Alonso
Zhonghua Wang
Liu Yang
Philipp Tschandl
Mingming Hu
G. Tan
Vincent Tang
+ Artificial Intelligence-Based Image Classification for Diagnosis of Skin Cancer: Challenges and Opportunities 2019 Manu S. Goyal
Thomas Knackstedt
Shaofeng Yan
Saeed Hassanpour
+ Artificial Intelligence-Based Image Classification for Diagnosis of Skin Cancer: Challenges and Opportunities. 2019 Manu Goyal
Thomas Knackstedt
Shaofeng Yan
Saeed Hassanpour
+ PDF Chat Closing the AI generalization gap by adjusting for dermatology condition distribution differences across clinical settings 2024 Rajeev V. Rikhye
Aaron Loh
Grace Hong
Preeti Singh
Margaret A. Smith
Vijaytha Muralidharan
Doris Wong
Rory Sayres
Michelle Phung
Nicolas J. Betancourt
+ DDI-CoCo: A Dataset for Understanding the Effect of Color Contrast in Machine-Assisted Skin Disease Detection 2024 Ming-Chang Chiu
Yingfei Wang
Yen-Ju Kuo
Pin‐Yu Chen
+ Visual Diagnosis of Dermatological Disorders: Human and Machine Performance 2019 Jeremy Kawahara
Ghassan Hamarneh
+ Visual Diagnosis of Dermatological Disorders: Human and Machine Performance 2019 Jeremy Kawahara
Ghassan Hamarneh
+ Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset 2021 Matthew Groh
Caleb Harris
Luis R. Soenksen
F. Din-Houn Lau
Rachel Han
Aerin Kim
Arash Koochek
Omar Badri
+ Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset 2021 Matthew Groh
Caleb Harris
Luis R. Soenksen
F. Din-Houn Lau
Rachel Han
Aerin Kim
Arash Koochek
Omar Badri
+ PDF Chat Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset 2021 Matthew Groh
Caleb Harris
Luis R. Soenksen
F. Din-Houn Lau
Rachel Han
Aerin Kim
Arash Koochek
Omar Badri
+ Improving dermatology classifiers across populations using images generated by large diffusion models 2022 Luke W. Sagers
James A. Diao
Matthew Groh
Pranav Rajpurkar
Adewole S. Adamson
Arjun K. Manrai
+ (De)Constructing Bias on Skin Lesion Datasets 2019 Alceu Bissoto
Michel Fornaciali
Eduardo Valle
Sandra Avila
+ PDF Chat (De) Constructing Bias on Skin Lesion Datasets 2019 Alceu Bissoto
Michel Fornaciali
Eduardo Valle
Sandra Avila
+ Towards Realization of Augmented Intelligence in Dermatology: Advances and Future Directions 2021 Roxana Daneshjou
Carrie Kovarik
Justin Ko

Works That Cite This (17)

Action Title Year Authors
+ PDF Chat PASSION for Dermatology: Bridging the Diversity Gap with Pigmented Skin Images from Sub-Saharan Africa 2024 Philippe Gottfrois
Fabian Gröger
Faly Herizo Andriambololoniaina
Ludovic Amruthalingam
Álvaro Gonzålez-Jiménez
Christophe François Hsu
Agnes Kessy
Simone Lionetti
Daudi Mavura
Wingston Ng’ambi
+ PDF Chat CIRCLe: Color Invariant Representation Learning for Unbiased Classification of Skin Lesions 2023 Arezou Pakzad
Kumar Abhishek
Ghassan Hamarneh
+ Towards objective and systematic evaluation of bias in medical imaging AI 2023 Emma A. M. Stanley
Raissa Souza
Anthony Winder
Vedant Gulve
Kimberly Amador
Matthias Wilms
Nils D. Forkert
+ Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging 2024 Emma A. M. Stanley
Raissa Souza
Anthony Winder
Vedant Gulve
Kimberly Amador
Matthias Wilms
Nils D. Forkert
+ Skin Deep: Investigating Subjectivity in Skin Tone Annotations for Computer Vision Benchmark Datasets 2023 Teanna Barrett
Quan Ze Chen
Amy X. Zhang
+ PDF Chat Federated Active Learning Framework for Efficient Annotation Strategy in Skin-Lesion Classification 2024 Z. Y. Deng
Y.S. Yang
Kenji Suzuki
+ PDF Chat Algorithmic bias, generalist models, and clinical medicine 2023 Geoff Keeling
+ PDF Chat Towards Transparency in Dermatology Image Datasets with Skin Tone Annotations by Experts, Crowds, and an Algorithm 2022 Matthew Groh
Caleb Harris
Roxana Daneshjou
Omar Badri
Arash Koochek
+ Assessing the Generalizability of Deep Neural Networks-Based Models for Black Skin Lesions 2023 Luana Barros
Levy Chaves
Sandra Avila
+ DDI-CoCo: A Dataset for Understanding the Effect of Color Contrast in Machine-Assisted Skin Disease Detection 2024 Ming-Chang Chiu
Yingfei Wang
Yen-Ju Kuo
Pin‐Yu Chen

Works Cited by This (9)

Action Title Year Authors
+ PDF Chat Rethinking the Inception Architecture for Computer Vision 2016 Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
+ Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC) 2019 Noel Codella
Veronica Rotemberg
Philipp Tschandl
M. Emre Celebi
Stephen W. Dusza
David Gutman
Brian Helba
Aadi Kalloo
Konstantinos Liopyris
Michael A. Marchetti
+ PDF Chat Deep CORAL: Correlation Alignment for Deep Domain Adaptation 2016 Baochen Sun
Kate Saenko
+ Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization 2019 Shiori Sagawa
Pang Wei Koh
Tatsunori Hashimoto
Percy Liang
+ PDF Chat TrueImage: A Machine Learning Algorithm to Improve the Quality of Telehealth Photos 2020 Kailas Vodrahalli
Roxana Daneshjou
Roberto A. Novoa
Albert S. Chiou
Justin Ko
James Zou
+ PDF Chat The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions 2018 Philipp Tschandl
Cliff Rosendahl
Harald Kittler
+ PDF Chat A deep learning system for differential diagnosis of skin diseases 2020 Yuan Liu
Ayush Jain
Clara Eng
David H. Way
Kang Lee
Peggy Bui
Kimberly Kanada
Guilherme de Oliveira Marinho
Jessica Gallegos
Sara Gabriele
+ Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset 2021 Matthew Groh
Caleb Harris
Luis R. Soenksen
F. Din-Houn Lau
Rachel Han
Aerin Kim
Arash Koochek
Omar Badri
+ PDF Chat Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset 2021 Matthew Groh
Caleb Harris
Luis R. Soenksen
F. Din-Houn Lau
Rachel Han
Aerin Kim
Arash Koochek
Omar Badri