Covariance's Loss is Privacy's Gain: Computationally Efficient, Private and Accurate Synthetic Data

Type: Preprint

Publication Date: 2021-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2107.05824

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Covariance’s Loss is Privacy’s Gain: Computationally Efficient, Private and Accurate Synthetic Data 2022 March Boedihardjo
Thomas Strohmer
Roman Vershynin
+ PDF Chat Synthetic Data: Revisiting the Privacy-Utility Trade-off 2024 Fatima Jahan Sarmin
Atiquer Rahman Sarkar
Yang Wang
Noman Mohammed
+ Private sampling: a noiseless approach for generating differentially private synthetic data 2021 March Boedihardjo
Thomas Strohmer
Roman Vershynin
+ Private Sampling: A Noiseless Approach for Generating Differentially Private Synthetic Data 2022 March Boedihardjo
Thomas Strohmer
Roman Vershynin
+ pMSE Mechanism: Differentially Private Synthetic Data with Maximal Distributional Similarity 2018 Joshua Snoke
Aleksandra Slavković
+ Privacy of synthetic data: a statistical framework 2021 March Boedihardjo
Thomas Strohmer
Roman Vershynin
+ Really Useful Synthetic Data -- A Framework to Evaluate the Quality of Differentially Private Synthetic Data 2020 Christian Arnold
Marcel Neunhoeffer
+ pMSE Mechanism: Differentially Private Synthetic Data with Maximal Distributional Similarity. 2018 Joshua Snoke
Aleksandra Slavković
+ PDF Chat Privacy of Synthetic Data: A Statistical Framework 2022 March Boedihardjo
Thomas Strohmer
Roman Vershynin
+ Privacy Measurement in Tabular Synthetic Data: State of the Art and Future Research Directions 2023 Alexander Boudewijn
Andrea Filippo Ferraris
Daniele Panfilo
Vanessa Cocca
Sabrina Zinutti
Karel De Schepper
Carlo Rossi Chauvenet
+ What Is Synthetic Data? The Good, The Bad, and The Ugly 2023 Emiliano De Cristofaro
+ Synthetic Data -- Anonymisation Groundhog Day 2020 Theresa Stadler
Bristena Oprisanu
Carmela Troncoso
+ Synthetic Data -- Anonymisation Groundhog Day 2020 Theresa Stadler
Bristena Oprisanu
Carmela Troncoso
+ Practical considerations on using private sampling for synthetic data 2023 Clément Pierquin
Bastien Zimmermann
Matthieu Boussard
+ PDF Chat DP-CDA: An Algorithm for Enhanced Privacy Preservation in Dataset Synthesis Through Randomized Mixing 2024 Utsab Saha
Tanvir Muntakim Tonoy
Hafiz Imtiaz
+ Noise-Aware Statistical Inference with Differentially Private Synthetic Data 2022 Ossi Räisä
Joonas Jälkö
Samuel Kaski
Antti Honkela
+ PDF Chat Differentially Private Synthetic Data with Private Density Estimation 2024 Nikolija Bojkovic
Po‐Ling Loh
+ Post-processing Private Synthetic Data for Improving Utility on Selected Measures 2023 Hao Wang
Shivchander Sudalairaj
John Henning
Kristjan Greenewald
Akash Srivastava
+ Private measures, random walks, and synthetic data 2022 March Boedihardjo
Thomas Strohmer
Roman Vershynin
+ PDF Chat Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy 2024 Lucas Rosenblatt
Bernease Herman
Anastasia Holovenko
Wonkwon Lee
Joshua R. Loftus
Elizabeth McKinnie
Taras Rumezhak
Andrii Stadnik
Bill Howe
Julia Stoyanovich

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors