Deep Learning for Automated Classification and Characterization of Amorphous Materials

Type: Preprint

Publication Date: 2019-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1909.04648

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Deep Learning for Automated Classification and Characterization of Amorphous Materials 2019 Kirk Swanson
Shubhendu Trivedi
Joshua Lequieu
Kyle Swanson
Risi Kondor
+ PDF Chat Deep learning for automated classification and characterization of amorphous materials 2019 Kirk Swanson
Shubhendu Trivedi
Joshua Lequieu
Kyle Swanson
Risi Kondor
+ Roadmap on machine learning glassy liquids 2023 Gerhard Jung
Rinske M. Alkemade
Victor Bapst
Daniele Coslovich
Laura Filion
François P. Landes
Andrea J. Liu
Francesco Saverio Pezzicoli
Hayato Shiba
Giovanni Volpe
+ PDF Chat What do deep neural networks find in disordered structures of glasses? 2023 Norihiro Oyama
Shihori Koyama
Takeshi Kawasaki
+ What Do Deep Neural Networks Find in Disordered Structures of Glasses? 2022 Norihiro Oyama
Shihori Koyama
Takeshi Kawasaki
+ PDF Chat Predicting Dynamic Heterogeneity in Glass-Forming Liquids by Physics-Inspired Machine Learning 2023 Gerhard Jung
Giulio Biroli
Ludovic Berthier
+ Predicting dynamic heterogeneity in glass-forming liquids by physics-inspired machine learning 2022 Gerhard Jung
Giulio Biroli
Ludovic Berthier
+ PDF Chat Comparing machine learning techniques for predicting glassy dynamics 2022 Rinske M. Alkemade
Emanuele Boattini
Laura Filion
Frank Smallenburg
+ PDF Chat Self-supervised Learning for Glass Property Screening 2024 M. Y. Chen
Bin Liu
Ying Liu
Tianrui Li
+ GlassNet: a multitask deep neural network for predicting many glass properties 2023 Daniel R. Cassar
+ Combining Machine Learning and Physics to Understand Glassy Systems 2018 Samuel S. Schoenholz
+ PDF Chat Evaluation of GlassNet for physics-informed machine learning of glass stability and glass-forming ability 2024 Sarah I. Allec
Xiaonan Lu
Daniel R. Cassar
Xuan Tung Nguyen
Vinay I. Hegde
Thiruvillamalai Mahadevan
Miroslava Peterson
Jincheng Du
Brian J. Riley
John D. Vienna
+ PDF Chat Machine learning caging order parameters in glasses 2021 Kaihua Zhang
Xinyang Li
Yuliang Jin
Ying Jiang
+ PDF Chat Evaluation of GlassNet for physics‐informed machine learning of glass stability and glass‐forming ability 2024 Sarah I. Allec
Xiaonan Lu
Daniel R. Cassar
Xuan Tung Nguyen
Vinay I. Hegde
Thiruvillamalai Mahadevan
Miroslava Peterson
Jincheng Du
Brian J. Riley
John D. Vienna
+ Predicting Pair Correlation Functions of Glasses using Machine Learning 2023 Kumar Ayush
Pooja Sahu
Sk. Musharaf Ali
Tarak K. Patra
+ PyMatterSim: a Python Data Analysis Library for Computer Simulations of Materials Science, Physics, Chemistry, and Beyond 2024 Yuan‐Chao Hu
Tian Jian
+ PDF Chat PyMatterSim: a Python Data Analysis Library for Computer Simulations of Materials Science, Physics, Chemistry, and Beyond 2024 Yong Hu
Jianjun Tian
+ Classifying the age of a glass based on structural properties: A machine learning approach 2023 Giulia Janzen
C. Smit
Samantha Visbeek
Vincent E. Debets
Chengjie Luo
Cornelis Storm
Simone Ciarella
Liesbeth M. C. Janssen
+ Dynamic heterogeneity at the experimental glass transition predicted by transferable machine learning 2023 Gerhard Jung
Giulio Biroli
Ludovic Berthier
+ Unifying framework for strong and fragile liquids via machine learning: a study of liquid silica 2020 Ekin D. Cubuk
Andrea J. Liu
Efthimios Kaxiras
Samuel S. Schoenholz

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors