A sharp relative-error bound for the Helmholtz $h$-FEM at high frequency

Type: Preprint

Publication Date: 2019-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1911.11093

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A sharp relative-error bound for the Helmholtz $h$-FEM at high frequency 2019 David Lafontaine
Euan A. Spence
Jared Wunsch
+ PDF Chat The geometric error is less than the pollution error when solving the high-frequency Helmholtz equation with high-order FEM on curved domains 2024 Théophile Chaumont-Frelet
Euan A. Spence
+ PDF Chat Does the Helmholtz Boundary Element Method Suffer from the Pollution Effect? 2023 Jeffrey Galkowski
Euan A. Spence
+ Sharp preasymptotic error bounds for the Helmholtz $h$-FEM 2023 Jeffrey Galkowski
Euan A. Spence
+ Does the Helmholtz boundary element method suffer from the pollution effect? 2022 Jeffrey Galkowski
Euan A. Spence
+ Wavenumber-explicit convergence of the $hp$-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients 2020 David Lafontaine
Euan A. Spence
Jared Wunsch
+ Helmholtz FEM solutions are locally quasi-optimal modulo low frequencies 2023 Martin Averseng
Euan A. Spence
Jeffrey Galkowski
+ Sharp error bounds for edge-element discretisations of the high-frequency Maxwell equations 2024 Théophile Chaumont-Frelet
Jeffrey Galkowski
Euan A. Spence
+ PDF Chat Frequency-explicit approximability estimates for time-harmonic Maxwell's equations 2021 T. Chaumont-Frelet
Patrick Vega
+ A simple proof that the $hp$-FEM does not suffer from the pollution effect for the constant-coefficient full-space Helmholtz equation 2022 Euan A. Spence
+ Decompositions of high-frequency Helmholtz solutions via functional calculus, and application to the finite element method 2021 Jeffrey Galkowski
David Lafontaine
Euan A. Spence
Jared Wunsch
+ Wavenumber-explicit convergence of the hp-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients 2022 D. Lafontaine
Euan A. Spence
Jared Wunsch
+ Pre-asymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: $hp$ version 2012 Lingxue Zhu
Haijun Wu
+ Exponentially convergent multiscale methods for high frequency heterogeneous Helmholtz equations 2021 Yifan Chen
Thomas Y. Hou
Yixuan Wang
+ PDF Chat FEM-BEM coupling for the high-frequency Helmholtz problem 2024 Jens Markus Melenk
Ilaria Perugia
Alexander Rieder
+ Variable Order, Directional H2-Matrices for Helmholtz Problems with Complex Frequency 2019 Steffen Börm
María López-Férnández
Stefan Sauter
+ PDF Chat Preasymptotic Error Analysis of CIP-FEM and FEM for Helmholtz Equation with High Wave Number. Part II: $hp$ Version 2013 Lingxue Zhu
Haijun Wu
+ The $hp$-FEM applied to the Helmholtz equation with PML truncation does not suffer from the pollution effect 2022 Jeffrey Galkowski
David Lafontaine
Euan A. Spence
Jared Wunsch
+ Wavenumber-explicit analysis for the Helmholtz $h$-BEM: error estimates and iteration counts for the Dirichlet problem 2016 Jeffrey Galkowski
Eike H. MĂĽller
Euan A. Spence
+ Wavenumber-explicit analysis for the Helmholtz $h$-BEM: error estimates and iteration counts for the Dirichlet problem 2016 Jeffrey Galkowski
Eike H. MĂĽller
Euan A. Spence

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors