Martin boundary of random walks in convex cones

Type: Preprint

Publication Date: 2020-03-05

Citations: 0

Abstract

We determine the asymptotic behavior of the Green function for zero-drift random walks confined to multidimensional convex cones. As a consequence, we prove that there is a unique positive discrete harmonic function for these processes (up to a multiplicative constant); in other words, the Martin boundary reduces to a singleton.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Martin boundary of random walks in convex cones 2022 Jetlir Duraj
Kilian Raschel
Pierre Tarrago
Vitali Wachtel
+ Martin boundary of random walks in convex cones 2020 Jetlir Duraj
Kilian Raschel
Pierre Tarrago
Vitali Wachtel
+ Boundary behavior for random walks in cones 2018 Kilian Raschel
Pierre Tarrago
+ PDF Chat On harmonic functions of killed random walks in convex cones 2014 Jetlir Duraj
+ Green function of a random walk in a cone 2018 Jetlir Duraj
Vitali Wachtel
+ PDF Chat Martin boundary of random walks in convex cones 2020 Jetlir Duraj
Kilian Raschel
Pierre Tarrago
Vitali Wachtel
+ PDF Chat Martin boundary of random walks in convex cones 2018 Kilian Raschel
Pierre Tarrago
+ Random walks in cones revisited 2021 Denis Denisov
Vitali Wachtel
+ Martin boundary of a killed non-centered random walk in a general cone 2020 Irina Ignatiouk-Robert
+ Alternative constructions of a harmonic function for a random walk in a cone 2018 Denis Denisov
Vitali Wachtel
+ Alternative constructions of a harmonic function for a random walk in a cone 2018 Denis Denisov
Vitali Wachtel
+ PDF Chat Random walks in cones: The case of nonzero drift 2013 Jetlir Duraj
+ Alternative constructions of a harmonic function for a random walk in a cone 2019 Denis Denisov
Vitali Wachtel
+ Convex hulls of random walks 2019 James McRedmond
+ Markov chains in the domain of attraction of Brownian motion in cones 2023 Denis Denisov
Kaiyuan Zhang
+ PDF Chat Convex hulls of planar random walks with drift 2014 Andrew R. Wade
Chang Xu
+ Random walks with drift inside a pyramid: convergence rate for the survival probability 2022 Rodolphe Garbit
Kilian Raschel
+ The Linear Case: Random Walk and Harmonic Functions 2020 Marta Lewicka
+ Random walks in cones 2015 Denis Denisov
Vitali Wachtel
+ Martin Boundary of a Space-time Brownian Motion with Drift Killed at the Boundary of a Moving Cone 2024 Sandro Franceschi

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors