Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential

Type: Article

Publication Date: 2023-06-01

Citations: 0

DOI: https://doi.org/10.2748/tmj.20211216

Abstract

We consider a mass critical nonlinear Schrödinger equation with a real-valued potential. In this work, we construct a minimal mass solution that blows up at finite time, under weaker assumptions on spatial dimensions and potentials than Banica, Carles, and Duyckaerts (2011). Moreover, we show that the blow-up solution converges to a blow-up profile. Furthermore, we improve some parts of the arguments in Raphaël and Szeftel (2011) and Le Coz, Martel, and Raphaël (2016).

Locations

  • Tohoku Mathematical Journal - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential 2020 Naoki Matsui
+ PDF Chat Minimal-mass blow-up solutions for inhomogeneous nonlinear Schrödinger equations with growing potentials 2023 Naoki Matsui
+ Minimal-mass blow-up solutions for inhomogeneous nonlinear Schrödinger equations with growth potentials 2021 Naoki Matsui
+ PDF Chat Minimal-mass blow-up solutions for nonlinear Schrödinger equations with an inverse potential 2021 Naoki Matsui
+ Minimal mass blow-up solutions for nonlinear Schr\"{o}dinger equations with an inverse potential. 2020 Naoki Matsui
+ PDF Chat Lower bounds for the $L^2$ minimal periodic blow-up solutions of critical nonlinear Schrödinger equation 2002 Christophe Antonini
+ PDF Chat Minimal-mass blowup solutions of the mass-critical NLS 2008 Terence Tao
Monica Vişan
Xiaoyi Zhang
+ Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power 1993 Franck Merle
+ Erratum by editorial office: Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential (Tohoku Math.J. 75 (2023), 215--232) 2023 Naoki Matsui
+ PDF Chat Minimal mass blow-up solutions for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>critical NLS with inverse-square potential 2017 Elek Csobo
François Genoud
+ PDF Chat Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential 2021 Jingjing Pan
Jian Zhang
+ On the blow up phenomenon of the critical nonlinear Schrödinger equation 2005 Sahbi Keraani
+ Minimal mass blow-up solutions for nonlinear Schrödinger equations with a singular potential 2021 Naoki Matsui
+ PDF Chat Minimal Blow-Up Solutions to the Mass-Critical Inhomogeneous NLS Equation 2010 Valeria Banica
Rémi Carles
Thomas Duyckaerts
+ Blowup rate for mass critical rotational nonlinear Schrödinger equations 2017 Nyla Basharat
Yichen Hu
Shijun Zheng
+ Non-radial Blow-up for a mass-critical fourth-order inhomogeneous nonlinear Schrödinger equation 2023 Ruobing Bai
Mohamed Majdoub
Tarek Saanouni
+ Minimal mass blow up solutions for a double power nonlinear Schrödinger equation 2014 Stefan Le Coz
Yvan Martel
Pierre Raphaël
+ Minimal mass blow up solutions for a double power nonlinear Schr\"odinger equation 2014 Stefan Le Coz
Yvan Martel
Pierre Raphaël
+ PDF Chat On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation 2018 Van Duong Dinh
+ A minimal mass blow-up solution on a nonlinear quantum star graph 2023 François Genoud
Stefan Le Coz
Julien Royer

Works That Cite This (0)

Action Title Year Authors