Learning Mesh-Based Simulation with Graph Networks

Type: Preprint

Publication Date: 2020-01-01

Citations: 212

DOI: https://doi.org/10.48550/arxiv.2010.03409

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Learning Mesh-Based Simulation with Graph Networks 2020 Tobias Pfaff
Meire Fortunato
Álvaro Sánchez‐González
Peter Battaglia
+ PDF Chat X-MeshGraphNet: Scalable Multi-Scale Graph Neural Networks for Physics Simulation 2024 Mohammad Amin Nabian
+ Scientific Computing Algorithms to Learn Enhanced Scalable Surrogates for Mesh Physics 2023 Brian R. Bartoldson
Yeping Hu
Amar Saini
José Cadena
Yucheng Fu
Jie Bao
Zhijie Xu
Brenda Ng
Phan Nguyen
+ Learning to Simulate Complex Physics with Graph Networks 2020 Álvaro Sánchez‐González
Jonathan Godwin
Tobias Pfaff
Rex Ying
Jure Leskovec
Peter Battaglia
+ Simulating Continuum Mechanics with Multi-Scale Graph Neural Networks 2021 Mario Lino
Chris D. Cantwell
Anil A. Bharath
Stathi Fotiadis
+ Simulating Continuum Mechanics with Multi-Scale Graph Neural Networks. 2021 Mario Lino
Chris D. Cantwell
Anil A. Bharath
Stathi Fotiadis
+ MultiScale MeshGraphNets 2022 Meire Fortunato
Tobias Pfaff
Peter Wirnsberger
Alexander Pritzel
Peter Battaglia
+ PDF Chat Reducing the Sensitivity of Neural Physics Simulators to Mesh Topology via Pretraining 2025 Nathan Vaska
Justin Goodwin
Robin Walters
Rajmonda S. Caceres
+ PDF Chat Physics meets Topology: Physics-informed topological neural networks for learning rigid body dynamics 2024 Anlei Wei
Olga Fink
+ PDF Chat MBDS: A Multi-Body Dynamics Simulation Dataset for Graph Networks Simulators 2024 Yang Sheng
Fengge Wu
Junsuo Zhao
+ Learning Controllable Adaptive Simulation for Multi-resolution Physics 2023 Tailin Wu
Takashi Maruyama
Qingqing Zhao
Gordon Wetzstein
Jure Leskovec
+ SURF: A Generalization Benchmark for GNNs Predicting Fluid Dynamics 2023 Stefan Künzli
Florian Grötschla
Joël Mathys
Roger Wattenhofer
+ PDF Chat Multiscale graph neural networks with adaptive mesh refinement for accelerating mesh-based simulations 2024 Roberto Perera
Vinamra Agrawal
+ Efficient Learning of Mesh-Based Physical Simulation with BSMS-GNN 2022 Yadi Cao
Menglei Chai
Minchen Li
Chenfanfu Jiang
+ PDF Chat MeshMask: Physics-Based Simulations with Masked Graph Neural Networks 2025 Paul Garnier
Vincent Lannelongue
Jonathan Viquerat
Elie Hachem
+ GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling 2022 Krishna Kumar
Joseph P. Vantassel
+ PDF Chat Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers for non-stationary and nonlinear simulations on arbitrary meshes 2024 Tobias Würth
Niklas Freymuth
Clemens Zimmerling
Gerhard Neumann
Luise Kärger
+ Multifidelity graph neural networks for efficient and accurate mesh‐based partial differential equations surrogate modeling 2024 Mehdi Taghizadeh
Mohammad Amin Nabian
Negin Alemazkoor
+ Interpretable Fine-Tuning for Graph Neural Network Surrogate Models 2023 Shivam Barwey
Romit Maulik
+ PDF Chat Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs 2024 Hrishikesh Viswanath
Chang Yue
Julius Berner
Peter Yichen Chen
Aniket Bera

Works That Cite This (89)

Action Title Year Authors
+ PDF Chat Deep Generative Models in Engineering Design: A Review 2022 Lyle Regenwetter
Amin Heyrani Nobari
Faez Ahmed
+ PDF Chat Towards Multi-Layered 3D Garments Animation 2023 Yidi Shao
Chen Change Loy
Bo Dai
+ Combinatorial Optimization and Reasoning with Graph Neural Networks 2021 Quentin Cappart
Didier Chételat
Elias B. Khalil
Andrea Lodi
Christopher Morris
Petar Veličković
+ PDF Chat Machine Learning With Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review 2023 Sibo Cheng
César Quilodrán-Casas
Said Ouala
Alban Farchi
Che Liu
Pierre Tandeo
Ronan Fablet
Didier Lucor
Bertrand Iooss
Julien Brajard
+ PDF Chat Thermodynamics-Informed Graph Neural Networks 2022 Quercus Hernández
Alberto Badías
Francisco Chinesta
Elías Cueto
+ PDF Chat Boundary Graph Neural Networks for 3D Simulations 2023 Andreas Mayr
Sebastian Lehner
Arno Mayrhofer
Christoph Kloss
Sepp Hochreiter
J. Brandstetter
+ Applying Convolutional Neural Networks to data on unstructured meshes with space-filling curves 2024 Claire E. Heaney
Yuling Li
Omar Matar
Christopher C. Pain
+ Continuous PDE Dynamics Forecasting with Implicit Neural Representations 2022 Yuan Yin
Matthieu Kirchmeyer
Jean-Yves Franceschi
Alain Rakotomamonjy
Patrick Gallinari
+ A hybrid numerical methodology coupling reduced order modeling and Graph Neural Networks for non-parametric geometries: Applications to structural dynamics problems 2024 Victor Matray
Faisal Amlani
Frédéric Feyel
David Néron
+ Spectroscopy-Guided Discovery of Three-Dimensional Structures of Disordered Materials with Diffusion Models 2024 Hyuna Kwon
Tim Hsu
Wenyu Sun
Wonseok Jeong
Fikret Aydin
James Chapman
Xiaohong Chen
Vincenzo Lordi
Matthew R. Carbone
Deyu Lu

Works Cited by This (0)

Action Title Year Authors