Optimal convergence rates in $L^2$ for a first order system least squares finite element method. Part I: homogeneous boundary conditions

Type: Preprint

Publication Date: 2020-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2012.12919

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Optimal convergence rates in <i>L</i><sup>2</sup> for a first order system least squares finite element method 2022 Maximilian Bernkopf
Jens Markus Melenk
+ PDF Chat Optimal convergence rates in $L^2$ for a first order system least squares finite element method -- Part II: inhomogeneous Robin boundary conditions 2024 Maximilian Bernkopf
Jens Markus Melenk
+ Optimal convergence rates in L2 for a first order system least squares finite element method - part II: Inhomogeneous Robin boundary conditions 2024 Maximilian Bernkopf
Jens Markus Melenk
+ Error Analysis for Constrained First-Order System Least-Squares Finite-Element Methods 2014 James H. Adler
Panayot S. Vassilevski
+ PDF Chat First-Order System Least Squares for Second-Order Partial Differential Equations: Part II 1997 Zhiqiang Cai
Thomas A. Manteuffel
Stephen F. McCormick
+ The Discrete First-Order System Least Squares: The Second-Order Elliptic Boundary Value Problem 2002 Zhiqiang Cai
Byeong Chun Shin
+ First-order system least-squares for second-order elliptic problems with discontinuous coefficients: Further results 1996 B. Bloechle
Thomas A. Manteuffel
Stephen F. McCormick
Gerhard Starke
+ Improved discretization error estimates for first-order system least squares 2003 T. Manteuffel
S. McCormick
Christoph Pflaum
+ Adaptive First-Order System Least-Squares Finite Element Methods for Second Order Elliptic Equations in Non-Divergence Form 2019 Weifeng Qiu
Shun Zhang
+ Several Proofs of Coerciveness of First-Order System Least-Squares Methods for General Second-Order Elliptic PDEs 2022 Shun Zhang
+ Least Squares Methods for 2mth Order Elliptic Boundary-Value Problems 1971 James H. Bramble
A. H. Schatz
+ ANALYSIS OF LEAST-SQUARES APPROXIMATIONS TO SECOND-ORDER ELLIPTIC PROBLEMS. I. FINITE ELEMENT METHOD 2002 Suh‐Yuh Yang
+ A posteriori error estimates in L2-norm for the least squares finite element method applied to a first order system of differential equations 1999 Owe Axelsson
Igor Kaporin
+ PDF Chat Div First-Order System LL* (FOSLL*) for Second-Order Elliptic Partial Differential Equations 2015 Zhiqiang Cai
Robert D. Falgout
Shun Zhang
+ PDF Chat A deep First-Order System Least Squares method for solving elliptic PDEs 2022 Francisco M. Bersetche
Juan Pablo Borthagaray
+ NEGATIVE NORM LEAST-SQUARES SPECTRAL METHODS FOR THE ELLIPTIC PROBLEM 2006 Byeong Chun Shin
+ PDF Chat Adaptive First-Order System Least-Squares Finite Element Methods for Second-Order Elliptic Equations in Nondivergence Form 2020 Weifeng Qiu
Shun Zhang
+ $H^2$--Convergence of least-squares kernel collocation methods 2018 Ka‐Chun Cheung
Leevan Ling
Robert Schaback
+ $H^2$--Convergence of least-squares kernel collocation methods 2018 Ka‐Chun Cheung
Leevan Ling
Robert Schaback
+ First-Order System $\CL\CL^*$ (FOSLL*): Scalar Elliptic Partial Differential Equations 2001 Zhiqiang Cai
Thomas A. Manteuffel
Steve McCormick
J. Ruge

Works That Cite This (0)

Action Title Year Authors