Training Affective Computer Vision Models by Crowdsourcing Soft-Target Labels

Type: Preprint

Publication Date: 2021-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2101.03477

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Training Affective Computer Vision Models by Crowdsourcing Soft-Target Labels 2021 Peter Washington
Onur Cezmi Mutlu
Émilie Leblanc
Aaron Kline
Cathy Hou
Brianna Chrisman
Nate Stockham
Kelley Paskov
Catalin Voss
Nick Haber
+ Using Crowdsourcing to Train Facial Emotion Machine Learning Models with Ambiguous Labels. 2021 Peter Washington
Onur Cezmi Mutlu
Émilie Leblanc
Aaron Kline
Cathy Hou
Brianna Chrisman
Nate Stockham
Kelley Paskov
Catalin Voss
Nick Haber
+ Training Affective Computer Vision Models by Crowdsourcing Soft-Target Labels 2021 Peter Washington
Haik Kalantarian
Jack Kent
Arman Husic
Aaron Kline
Émilie Leblanc
Cathy Hou
Cezmi Mutlu
Kaitlyn Dunlap
Yordan Penev
+ An Exploration of Active Learning for Affective Digital Phenotyping 2022 Peter Washington
Cezmi Mutlu
Aaron Kline
Cathy Hou
Kaitlyn Dunlap
Jack W. Kent
Arman Husic
Nate Stockham
Brianna Chrisman
Kelley Paskov
+ SeedBERT: Recovering Annotator Rating Distributions from an Aggregated Label 2022 Aneesha Sampath
Victoria Lin
Louis‐Philippe Morency
+ Crowdsourcing in the Absence of Ground Truth -- A Case Study 2019 Ramya Srinivasan
Ajay Chander
+ Expert and Crowd-Guided Affect Annotation and Prediction 2021 Ramanathan Subramanian
Yan Yan
Nicu Sebe
+ MuSE-ing on the Impact of Utterance Ordering On Crowdsourced Emotion Annotations 2019 Mimansa Jaiswal
Zakaria Aldeneh
Cristian-Paul Bara
Yuanhang Luo
Mihai Burzo
Rada Mihalcea
Emily Mower Provost
+ PDF Chat Muse-ing on the Impact of Utterance Ordering on Crowdsourced Emotion Annotations 2019 Mimansa Jaiswal
Zakaria Aldeneh
Cristian-Paul Bara
Yuanhang Luo
Mihai Burzo
Rada Mihalcea
Emily Mower Provost
+ MuSE-ing on the Impact of Utterance Ordering On Crowdsourced Emotion Annotations 2019 Mimansa Jaiswal
Zakaria Aldeneh
Cristian-Paul Bara
Yuanhang Luo
Mihai Burzo
Rada Mihalcea
Emily Mower Provost
+ CROWDLAB: Supervised learning to infer consensus labels and quality scores for data with multiple annotators 2022 Hui Wen Goh
Ulyana Tkachenko
Jonas Mueller
+ Probabilistic Multigraph Modeling for Improving the Quality of Crowdsourced Affective Data 2017 Jianbo Ye
Jia Li
Michelle G. Newman
Reginald B. Adams
James Z. Wang
+ PDF Chat Probabilistic Multigraph Modeling for Improving the Quality of Crowdsourced Affective Data 2017 Jianbo Ye
Jia Li
Michelle G. Newman
Reginald B. Adams
James Z. Wang
+ Crowd Labeling: a survey 2013 Jafar Muhammadi
Hamid R. Rabiee
Seyed Abbas Hosseini
+ Crowd Labeling: a survey 2013 Jafar Muhammadi
Hamid R. Rabiee
Seyed Abbas Hosseini
+ Implicit Design Choices and Their Impact on Emotion Recognition Model Development and Evaluation 2023 Mimansa Jaiswal
+ Finding the Ground-Truth from Multiple Labellers: Why Parameters of the Task Matter. 2021 Robert McCluskey
Amir Enshaei
Bashar Hasan
+ PDF Chat MER 2024: Semi-Supervised Learning, Noise Robustness, and Open-Vocabulary Multimodal Emotion Recognition 2024 Zheng Lian
Haiyang Sun
Licai Sun
Zhuofan Wen
Siyuan Zhang
Shun Chen
Hao Gu
Jinming Zhao
Ziyang Ma
Xie Chen
+ PDF Chat Crowd-Certain: Label Aggregation in Crowdsourced and Ensemble Learning Classification 2023 mohammadsadegh majdi
Jeffrey J. Rodrı́guez
+ A General-Purpose Crowdsourcing Computational Quality Control Toolkit for Python. 2021 Dmitry Ustalov
Nikita Pavlichenko
В Ю Лосев
Evgeny Tulin
Iulian Giliazev

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors