Type: Article
Publication Date: 2021-10-06
Citations: 5
DOI: https://doi.org/10.1088/1361-6544/ac288c
We study decay properties for solutions to the initial value problem associated with the one-dimensional Zakharov-Rubenchik/Benney-Roskes system. We prove time-integrability in growing compact intervals of size $t^{r}$, $r<2/3$, centered on some characteristic curves coming from the underlying transport equations associated with the ZR/BR system. Additionally, we prove decay to zero of the local energy-norm in so-called far-field regions. Our results are independent of the size of the initial data and do not require any parity condition.