Decompositions of high-frequency Helmholtz solutions via functional calculus, and application to the finite element method

Type: Preprint

Publication Date: 2021-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2102.13081

Locations

  • UCL Discovery (University College London) - View - PDF
  • arXiv (Cornell University) - View
  • Pure (University of Bath) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Decompositions of High-Frequency Helmholtz Solutions via Functional Calculus, and Application to the Finite Element Method 2023 Jeffrey Galkowski
D. Lafontaine
Euan A. Spence
Jared Wunsch
+ Wavenumber-explicit convergence of the $hp$-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients 2020 David Lafontaine
Euan A. Spence
Jared Wunsch
+ Scattering by finely-layered obstacles: frequency-explicit bounds and homogenization 2021 Théophile Chaumont-Frelet
Euan A. Spence
+ Wavenumber-explicit convergence of the hp-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients 2022 D. Lafontaine
Euan A. Spence
Jared Wunsch
+ PDF Chat Does the Helmholtz Boundary Element Method Suffer from the Pollution Effect? 2023 Jeffrey Galkowski
Euan A. Spence
+ Does the Helmholtz boundary element method suffer from the pollution effect? 2022 Jeffrey Galkowski
Euan A. Spence
+ PDF Chat A hybrid approach to solve the high-frequency Helmholtz equation with source singularity in smooth heterogeneous media 2018 Jun Fang
Jianliang Qian
Leonardo Zepeda-Núñez
Hongkai Zhao
+ PDF Chat Scattering by Finely Layered Obstacles: Frequency-Explicit Bounds and Homogenization 2023 Théophile Chaumont-Frelet
Euan A. Spence
+ Analysis of the Fourier series Dirichlet-to-Neumann boundary condition of the Helmholtz equation and its application to finite element methods 2016 Liwei Xu
Tao Yin
+ A simple proof that the $hp$-FEM does not suffer from the pollution effect for the constant-coefficient full-space Helmholtz equation 2022 Euan A. Spence
+ Wavenumber-explicit analysis for the Helmholtz $h$-BEM: error estimates and iteration counts for the Dirichlet problem 2016 Jeffrey Galkowski
Eike H. Müller
Euan A. Spence
+ Wavenumber-explicit analysis for the Helmholtz $h$-BEM: error estimates and iteration counts for the Dirichlet problem 2016 Jeffrey Galkowski
Eike H. Müller
Euan A. Spence
+ PDF Chat Analysis of the Fourier series Dirichlet-to-Neumann boundary condition of the Helmholtz equation and its application to finite element methods 2021 Liwei Xu
Tao Yin
+ A TAILORED FINITE POINT METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH WAVE NUMBERS IN HETEROGENEOUS MEDIUM 2008 Houde
Han
Zhongyi
Huang
+ A Fixed-Point Iteration Method for High Frequency Helmholtz Equations 2022 Songting Luo
Qing Liu
+ Pollution analysis for high order discretizations of highly heterogeneous Helmholtz problems 2015 Hélène Barucq
Henri Calandra
Théophile Chaumont-Frelet
Christian Gout
+ Sharp preasymptotic error bounds for the Helmholtz $h$-FEM 2023 Jeffrey Galkowski
Euan A. Spence
+ The $hp$-FEM applied to the Helmholtz equation with PML truncation does not suffer from the pollution effect 2024 Jeffrey Galkowski
David Lafontaine
Euan A. Spence
Jared Wunsch
+ The $hp$-FEM applied to the Helmholtz equation with PML truncation does not suffer from the pollution effect 2022 Jeffrey Galkowski
David Lafontaine
Euan A. Spence
Jared Wunsch
+ Résolution numérique de quelques problèmes du type Helmholtz avec conditions au bord d'impédance ou des couches absorbantes (PML) 2019 Jérôme Tomezyk

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors