Using Python for Model Inference in Deep Learning

Type: Preprint

Publication Date: 2021-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.2104.00254

View

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Using Python for Model Inference in Deep Learning. 2021 Zachary DeVito
Jason Ansel
Will Constable
Michael Suo
Ailing Zhang
Kim Hazelwood
+ PDF Chat Studying the Impact of TensorFlow and PyTorch Bindings on Machine Learning Software Quality 2024 Hao Li
Gopi Krishnan Rajbahadur
Cor鈥怭aul Bezemer
+ PDF Chat Studying the Impact of TensorFlow and PyTorch Bindings on Machine Learning Software Quality 2024 Hao Li
Gopi Krishnan Rajbahadur
Cor鈥怭aul Bezemer
+ TensorX: Extensible API for Neural Network Model Design and Deployment 2020 Davide Nunes
Lu铆s Antunes
+ TensorX: Extensible API for Neural Network Model Design and Deployment. 2020 Davide Nunes
Luis M. Antunes
+ InferPy: Probabilistic Modeling with Deep Neural Networks Made Easy 2019 Javier C贸zar
Rafael Caba帽as
Antonio Salmer贸n
Andr茅s R. Masegosa
+ InferPy: Probabilistic Modeling with Deep Neural Networks Made Easy. 2019 Javier C贸zar
Rafael Caba帽as
Antonio Salmer贸n
Andr茅s R. Masegosa
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
+ PDF Chat TensorLayer: A Versatile Library for Efficient Deep Learning Development 2017 Hao Dong
Akara Supratak
Luo Mai
Fangde Liu
Axel Oehmichen
Simiao Yu
Yike Guo
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
+ TensorFlow.js: Machine Learning for the Web and Beyond 2019 Daniel Smilkov
Nikhil Thorat
Yannick Assogba
Ann Yuan
Nick Kreeger
Ping Yu
Kangyi Zhang
Shanqing Cai
Eric Nielsen
David Soergel
+ TensorFlow.js: Machine Learning for the Web and Beyond 2019 Daniel Smilkov
Nikhil Thorat
Yannick Assogba
Ann Yuan
Nick Kreeger
Ping Yu
Kangyi Zhang
Shanqing Cai
Eric Nielsen
David Soergel
+ PDF Chat DistML.js: Installation-free Distributed Deep Learning Framework for Web Browsers 2024 Masatoshi Hidaka
Tomohiro Hashimoto
Yuto Nishizawa
Tatsuya Harada
+ A Tensor Compiler for Unified Machine Learning Prediction Serving 2020 Supun Nakandala
Karla Saur
Gyeong-In Yu
Konstantinos Karanasos
Carlo Curino
Markus Weimer
Matteo Interlandi
+ A Tensor Compiler for Unified Machine Learning Prediction Serving 2020 Supun Nakandala
Karla Saur
Gyeong-In Yu
Konstantinos Karanasos
Carlo Curino
Markus Weimer
Matteo Interlandi
+ A Tensor Compiler for Unified Machine Learning Prediction Serving 2020 Supun Nakandala
Karla Saur
Gyeong-In Yu
Konstantinos Karanasos
Carlo Curino
Markus Weimer
Matteo Interlandi
+ NSML: A Machine Learning Platform That Enables You to Focus on Your Models 2017 Nako Sung
Minkyu Kim
Hyun鈥怶oo Jo
Youngil Yang
Jingwoong Kim
Leonard Lausen
Youngkwan Kim
Ga鈥怸oung Lee
Donghyun Kwak
Jung-Woo Ha
+ PDF Chat TensorLayer 2017 Hao Dong
Akara Supratak
Luo Mai
Fangde Liu
Axel Oehmichen
Simiao Yu
Yike Guo
+ PDF Chat PyMilo: A Python Library for ML I/O 2024 AmirHosein Rostami
Sepand Haghighi
Sadra Sabouri
Alireza Zolanvari

Citing (0)

Action Title Year Authors