Type: Article
Publication Date: 2022-06-08
Citations: 7
DOI: https://doi.org/10.1007/s10208-022-09571-x
Abstract The classical notion of retraction map used to approximate geodesics is extended and rigorously defined to become a powerful tool to construct geometric integrators and it is called discretization map. Using the geometry of the tangent and cotangent bundles, we are able to tangently and cotangent lift such a map so that these lifts inherit the same properties as the original one and they continue to be discretization maps. In particular, the cotangent lift of a discretization map is a natural symplectomorphism, what plays a key role for constructing geometric integrators and symplectic methods. As a result, a wide range of (higher-order) numerical methods are recovered and canonically constructed by using different discretization maps, as well as some operations with Lagrangian submanifolds.