GemNet: Universal Directional Graph Neural Networks for Molecules

Type: Preprint

Publication Date: 2021-01-01

Citations: 100

DOI: https://doi.org/10.48550/arxiv.2106.08903

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ GemNet: Universal Directional Graph Neural Networks for Molecules 2021 Johannes Klicpera
Florian Becker
Stephan Günnemann
+ Directional Message Passing for Molecular Graphs 2020 Johannes Klicpera
Janek Groß
Stephan Günnemann
+ Directional Message Passing for Molecular Graphs 2020 Johannes Gasteiger
Janek Groß
Stephan Günnemann
+ ViSNet: an equivariant geometry-enhanced graph neural network with vector-scalar interactive message passing for molecules 2022 Yusong Wang
Shaoning Li
Xinheng He
Mingyu Li
Zun Wang
Nanning Zheng
Bin Shao
Tong Wang
Tie‐Yan Liu
+ PDF Chat Molecule Graph Networks with Many-body Equivariant Interactions 2024 Zetian Mao
Jiawen Li
Liang Chen
Diptesh Das
Masato Sumita
Koji Tsuda
+ Long-Short-Range Message-Passing: A Physics-Informed Framework to Capture Non-Local Interaction for Scalable Molecular Dynamics Simulation 2023 Yunyang Li
Yusong Wang
Lin Huang
Han Yang
Xinran Wei
Jia Zhang
Tong Wang
Zun Wang
Bin Shao
Tie‐Yan Liu
+ PDF Chat MGNN: Moment Graph Neural Network for Universal Molecular Potentials 2024 Jian Chang
Shuze Zhu
+ Building powerful and equivariant graph neural networks with message-passing 2020 Clément Vignac
Andreas Loukas
Pascal Frossard
+ Building powerful and equivariant graph neural networks with structural message-passing 2020 Clément Vignac
Andreas Loukas
Pascal Frossard
+ Building powerful and equivariant graph neural networks with structural message-passing 2020 Clément Vignac
Andreas Loukas
Pascal Frossard
+ Is Distance Matrix Enough for Geometric Deep Learning? 2023 Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
+ GPS++: Reviving the Art of Message Passing for Molecular Property Prediction 2023 Dominic Masters
Josef Dean
Kerstin Kläser
Zhiyi Li
S. Maddrell-Mander
Adam Sanders
Hatem Helal
Deniz Beker
Andrew Fitzgibbon
Shenyang Huang
+ EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations 2023 Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhi‐Min Chen
Santiago Miret
M. Micoulaut
Morten M. Smedskjær
Sayan Ranu
N. M. Anoop Krishnan
+ PDF Chat geom2vec: pretrained GNNs as geometric featurizers for conformational dynamics 2024 Zihan Pengmei
Chatipat Lorpaiboon
Spencer C. Guo
Jonathan Weare
Aaron R. Dinner
+ Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets 2022 Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang Liu
Di He
Tie‐Yan Liu
+ Directional Message Passing on Molecular Graphs via Synthetic Coordinates 2021 Johannes Gasteiger
Chandan Yeshwanth
Stephan Günnemann
+ Directional Message Passing on Molecular Graphs via Synthetic Coordinates 2021 Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
+ PDF Chat A Universal Framework for Accurate and Efficient Geometric Deep Learning of Molecular Systems 2023 Shuo Zhang
Yang Liu
Lei Xie
+ An Empirical Study of Graphormer on Large-Scale Molecular Modeling Datasets 2022 Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang Liu
Di He
Tie‐Yan Liu
+ PDF Chat On the Scalability of GNNs for Molecular Graphs 2024 Maciej Sypetkowski
Frederik Wenkel
Farimah Poursafaei
Nia Dickson
Karush Suri
Philip Fradkin
Dominique Beaini

Works That Cite This (35)

Action Title Year Authors
+ Boosting heterogeneous catalyst discovery by structurally constrained deep learning models 2023 А. Н. Коровин
Innokentiy S. Humonen
Artem I. Samtsevich
Roman A. Eremin
A.I. Vasilev
V.D. Lazarev
Semen Budennyy
+ PDF Chat Robust and scalable uncertainty estimation with conformal prediction for machine-learned interatomic potentials 2022 Yuge Hu
Joseph Musielewicz
Zachary W. Ulissi
Andrew J. Medford
+ A Comprehensive Survey on Deep Graph Representation Learning 2023 Wei Ju
Zheng Fang
Yiyang Gu
Zequn Liu
Qingqing Long
Ziyue Qiao
Yifang Qin
Jianhao Shen
Fang Sun
Zhiping Xiao
+ Machine Learning and Invariant Theory 2023 Ben Blum-Smith
Soledad Villar
+ PDF Chat FINETUNA: fine-tuning accelerated molecular simulations 2022 Joseph Musielewicz
Xiaoxiao Wang
Tian Tian
Zachary W. Ulissi
+ PDF Chat Improving Expressive Power of Spectral Graph Neural Networks with Eigenvalue Correction 2024 Kangkang Lu
Yanhua Yu
Fei Hao
Xuan Li
Zixuan Yang
Zirui Guo
Meiyu Liang
Mengran Yin
Tat‐Seng Chua
+ PDF Chat Unified theory of atom-centered representations and message-passing machine-learning schemes 2022 Jigyasa Nigam
Sergey N. Pozdnyakov
Guillaume Fraux
Michele Ceriotti
+ Towards Foundation Models for Materials Science: The Open MatSci ML Toolkit 2023 Kelvin Lee
Carmelo Gonzales
Matthew Spellings
Mikhail Galkin
Santiago Miret
Nalini Kumar
+ PDF Chat Towards Multi-Layered 3D Garments Animation 2023 Yidi Shao
Chen Change Loy
Bo Dai
+ Graph-based Molecular Representation Learning 2023 Zhichun Guo
Kehan Guo
Bozhao Nan
Yijun Tian
Roshni G. Iyer
Yihong Ma
Olaf Wiest
Xiangliang Zhang
Wei Wang
Chuxu Zhang

Works Cited by This (0)

Action Title Year Authors