Regularization and Reparameterization Avoid Vanishing Gradients in Sigmoid-Type Networks

Type: Preprint

Publication Date: 2021-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.2106.02260

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Revise Saturated Activation Functions 2016 Bing Xu
Ruitong Huang
Mu Li
+ Gradients explode - Deep Networks are shallow - ResNet explained 2017 George Philipp
Dawn Song
Jaime Carbonell
+ PDF Chat Adaptively Customizing Activation Functions for Various Layers 2022 Haigen Hu
Aizhu Liu
Qiu Guan
Hanwang Qian
Xiaoxin Li
Shengyong Chen
Qianwei Zhou
+ Rapid training of deep neural networks without skip connections or normalization layers using Deep Kernel Shaping 2021 James Martens
Andy Ballard
Guillaume Desjardins
Grzegorz Świrszcz
Valentin Dalibard
Jascha Sohl‐Dickstein
Samuel S. Schoenholz
+ PDF Chat Stable and Robust Deep Learning By Hyperbolic Tangent Exponential Linear Unit (TeLU) 2024 Alfredo Fernandez
Ankur Mali
+ Adaptively Customizing Activation Functions for Various Layers 2021 Haigen Hu
Aizhu Liu
Qiu Guan
Xiaoxin Li
Shengyong Chen
Qianwei Zhou
+ Rapid training of deep neural networks without skip connections or normalization layers using Deep Kernel Shaping. 2021 James Martens
Andy Ballard
Guillaume Desjardins
Grzegorz Świrszcz
Valentin Dalibard
Jascha Sohl‐Dickstein
Samuel S. Schoenholz
+ Growing Cosine Unit: A Novel Oscillatory Activation Function That Can Speedup Training and Reduce Parameters in Convolutional Neural Networks 2021 Mathew Mithra Noel
L Arunkumar
Advait Trivedi
Praneet Dutta
+ Activation Functions in Artificial Neural Networks: A Systematic Overview 2021 Johannes Lederer
+ MaxGain: Regularisation of Neural Networks by Constraining Activation Magnitudes 2018 Henry Gouk
Bernhard Pfahringer
Eibe Frank
Michael J. Cree
+ MaxGain: Regularisation of Neural Networks by Constraining Activation Magnitudes 2018 Henry Gouk
Bernhard Pfahringer
Eibe Frank
Michael J. Cree
+ A Methodology for Automatic Selection of Activation Functions to Design Hybrid Deep Neural Networks 2018 Alberto Marchisio
Muhammad Abdullah Hanif
Semeen Rehman
Maurizio Martina
Muhammad Shafique
+ Adaptive Blending Units: Trainable Activation Functions for Deep Neural Networks 2018 Leon René Sütfeld
Flemming Brieger
Holger Finger
Sonja Füllhase
Gordon Pipa
+ Adaptive Blending Units: Trainable Activation Functions for Deep Neural Networks 2018 Leon René Sütfeld
Flemming Brieger
Holger Finger
Sonja Füllhase
Gordon Pipa
+ Normalized Activation Function: Toward Better Convergence 2022 Yuan Peiwen
Changsheng Zhu
+ Smooth activations and reproducibility in deep networks 2020 Gil I. Shamir
Dong Lin
Lorenzo Coviello
+ LiSHT: Non-Parametric Linearly Scaled Hyperbolic Tangent Activation Function for Neural Networks 2019 Swalpa Kumar Roy
Suvojit Manna
Shiv Ram Dubey
B.B. Chaudhuri
+ Fundamental differences between Dropout and Weight Decay in Deep Networks 2016 David P. Helmbold
Philip M. Long
+ PDF Chat Deep Learning Activation Functions: Fixed-Shape, Parametric, Adaptive, Stochastic, Miscellaneous, Non-Standard, Ensemble 2024 Mahmoud Hammad
+ PDF Chat Three Decades of Activations: A Comprehensive Survey of 400 Activation Functions for Neural Networks 2024 Vladimír Kunc
Jǐŕı Kléma

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors