Hip to Be (Latin) Square: Maximal Period Sequences from Orthogonal Cellular Automata

Type: Preprint

Publication Date: 2021-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2106.07750

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Hip to Be (Latin) Square: Maximal Period Sequences from Orthogonal Cellular Automata 2021 Luca Mariot
+ Enumeration of Maximal Cycles Generated by Orthogonal Cellular Automata 2022 Luca Mariot
+ Constructing Orthogonal Latin Squares from Linear Cellular Automata 2016 Luca Mariot
Enrico Formenti
Alberto Leporati
+ Constructing Orthogonal Latin Squares from Linear Cellular Automata. 2016 Luca Mariot
Enrico Formenti
Alberto Leporati
+ PDF Chat A classification of S-boxes generated by Orthogonal Cellular Automata 2023 Luca Mariot
Luca Manzoni
+ A classification of S-boxes generated by Orthogonal Cellular Automata 2023 Luca Mariot
Luca Manzoni
+ Exhaustive Generation of Linear Orthogonal Cellular Automata 2023 Enrico Formenti
Luca Mariot
+ On the Linear Components Space of S-boxes Generated by Orthogonal Cellular Automata 2022 Luca Mariot
Luca Manzoni
+ Covering arrays from maximal sequences over finite fields 2017 Georgios Tzanakis
+ Latin Hypercubes and Cellular Automata 2020 Maximilien Gadouleau
Luca Mariot
+ Latin Hypercubes and Cellular Automata 2020 Maximilien Gadouleau
Luca Mariot
+ PDF Chat Mutually orthogonal latin squares based on cellular automata 2019 Luca Mariot
Maximilien Gadouleau
Enrico Formenti
Alberto Leporati
+ A Hybrid Inversive Congruential Pseudorandom Number Generator with High Period 2021 Constanza Riera
Tapabrata Roy
Santanu Sarkar
Pantelimon Stănică
+ Covering Arrays from Maximal Sequences over Finite Fields 2017 Georgios Tzanakis
+ Periodic Binary Sequences: Solved and Unsolved Problems 2023 Solomon W. Golomb
+ Periodicity Analysis of the Logistic Map over Ring $\mathbb{Z}_{3^n}$ 2023 Xiaoxiong Lu
Eric Yong Xie
Chengqing Li
+ PDF Chat On the maximum order complexity of subsequences of the Thue–Morse and Rudin–Shapiro sequence along squares 2019 Zhimin Sun
Arne Winterhof
+ A Search for Good Pseudo-random Number Generators : Survey and Empirical Studies 2018 Kamalika Bhattacharjee
Krishnendu Maity
Sukanta Das
+ On the maximum order complexity of subsequences of the Thue-Morse and Rudin-Shapiro sequence along squares 2019 Zhimin Sun
Arne Winterhof
+ Constructing self-conjugate self-orthogonal diagonal latin squares 1998 Beiliang Du

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors