Non-archimedean Sendov's Conjecture

Type: Preprint

Publication Date: 2021-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2106.11155

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Non-archimedean Sendov's Conjecture 2021 Daebeom Choi
Seewoo Lee
+ PDF Chat Non-Archimedean Sendov’s Conjecture 2022 Daebeom Choi
Seewoo Lee
+ PDF Chat A Private Case of Sendov's Conjecture 2020 Todor Stoyanov Stoyanov
+ A Proof of Sendovs conjecture for Polynomials of degree Ten 2019 Dinesh Sharma Bhattarai
+ PDF Chat Non-Archimedean Welch Bounds and Non-Archimedean Zauner Conjecture 2022 K. Mahesh Krishna
+ An analogue of Mordell conjecture over function fields 1987 Kazuhisa Maehara
+ PDF Chat Sendov’s conjecture for sufficiently-high-degree polynomials 2022 Terence Tao
+ A Generalized abc-Conjecture over Function Fields 2002 Pei-Chu Hu
Chung-Chun Yang
+ Non-archimedean aspects of the SYZ conjecture 2022 LĂ©onard Pille-Schneider
+ Checking the p-adic Stark Conjecture When p Is Archimedean 1996 David S. Dummit
David R. Hayes
+ The Sendov conjecture for polynomials with at most seven distinct zeros 1996 Julius Borcea
+ THE SENDOV CONJECTURE FOR POLYNOMIALS WITH AT MOST SEVEN DISTINCT ZEROS 1996 LULIUS BORCEA
+ Open Problems for Polynomials over Finite Fields and Applications 2014 Daniel Panario
+ PDF Chat Sendov’s Conjecture: A Note on a Paper of Dégot 2020 Taboka Chalebgwa
+ Proof of the Sendov conjecture for polynomials of degree nine 2017 Zaizhao Meng
+ An analogue Mordell-Noguchi conjecture over function fields-bis 1988 Kazuhisa Maehara
+ PDF Chat A polynomial analog of the Goldbach conjecture 1963 David R. Hayes
+ On Kirillov's conjecture for archimedean fields 1989 Siddhartha Sahi
+ Pillai's conjecture for polynomials 2022 Sebastian Heintze
+ An elementary based sufficient condition for sums of 2mth powers of polynomials over non-archimedean real closed fields 1990 Margarita Bradley

Works That Cite This (0)

Action Title Year Authors