On Montgomery’s pair correlation conjecture: A tale of three integrals

Type: Article

Publication Date: 2022-02-15

Citations: 4

DOI: https://doi.org/10.1515/crelle-2021-0084

Abstract

Abstract We study three integrals related to the celebrated pair correlation conjecture of H. L. Montgomery. The first is the integral of Montgomery’s function <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>F</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {F(\alpha,T)} in bounded intervals, the second is an integral introduced by Selberg related to estimating the variance of primes in short intervals, and the last is the second moment of the logarithmic derivative of the Riemann zeta-function near the critical line. The conjectured asymptotic for any of these three integrals is equivalent to Montgomery’s pair correlation conjecture. Assuming the Riemann hypothesis, we substantially improve the known upper and lower bounds for these integrals by introducing new connections to certain extremal problems in Fourier analysis. In an appendix, we study the intriguing problem of establishing the sharp form of an embedding between two Hilbert spaces of entire functions naturally connected to Montgomery’s pair correlation conjecture.

Locations

  • arXiv (Cornell University) - View - PDF
  • Duo Research Archive (University of Oslo) - View - PDF
  • DataCite API - View
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ On Montgomery's pair correlation conjecture: a tale of three integrals 2021 Emanuel Carneiro
Vorrapan Chandee
Andrés Chirre
Micah B. Milinovich
+ On the $q$-analogue of the pair correlation conjecture via Fourier optimization 2021 Oscar E. Quesada-Herrera
+ On the $q$-analogue of the pair correlation conjecture via Fourier optimization 2021 Oscar E. Quesada-Herrera
+ On the 𝑞-analogue of the Pair Correlation Conjecture via Fourier optimization 2022 Oscar E. Quesada-Herrera
+ Fourier optimization and Montgomery's pair correlation conjecture 2023 Emanuel Carneiro
Micah B. Milinovich
Antonio Pedro Ramos
+ PDF Chat Fourier optimization and Montgomery’s pair correlation conjecture 2024 Emanuel Carneiro
Micah B. Milinovich
Antonio Pedro Ramos
+ On the joint second moment of zeta and its logarithmic derivative 2023 Alessandro Fazzari
+ PDF Chat Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function 2014 Emanuel Carneiro
Vorrapan Chandee
Friedrich Littmann
Micah B. Milinovich
+ On the extreme values of the Riemann zetafunction between its zeros on the critical line 2003 R. R. Hall
+ PDF Chat The third moment of the logarithm of zeta and a twisted pair correlation conjecture 2024 Alessandro Fazzari
Maxim Gerspach
+ On The Logarithm of the Riemann zeta-function Near the Nontrivial Zeros 2020 Fatma Çi̇çek
+ PDF Chat On the logarithm of the Riemann zeta-function near the nontrivial zeros 2021 Fatma Çi̇çek
+ PDF Chat On the distribution of imaginary parts of zeros of the Riemann zeta function, II 2008 Kevin Ford
K. Soundararajan
Alexandru Zaharescu
+ PDF Chat On the variance of sums of arithmetic functions over primes in short intervals and pair correlation for<i>L</i>-functions in the Selberg class 2016 Hung M. Bui
Jonathan P. Keating
David J. Smith
+ PDF Chat Twin prime correlations from the pair correlation of Riemann zeros 2019 Jonathan P. Keating
David J. Smith
+ PDF Chat ON BINARY CORRELATIONS OF MULTIPLICATIVE FUNCTIONS 2018 Joni Teräväinen
+ On the number variance of zeta zeros and a conjecture of Berry 2022 Meghann Moriah Lugar
Micah B. Milinovich
Oscar E. Quesada-Herrera
+ PDF Chat On the number variance of zeta zeros and a conjecture of Berry 2023 Meghann Moriah Lugar
Micah B. Milinovich
Oscar E. Quesada-Herrera
+ A note on the mean values of the derivatives of 𝜁’/𝜁 2021 Andrés Chirre
+ The variance of integers without small prime factors in short intervals 2021 Ofir Gorodetsky