On the inequality w(AB) ≤ c||A||w(B) where A is a positive operator

Type: Article

Publication Date: 2022-01-01

Citations: 1

DOI: https://doi.org/10.2298/fil2204337b

Abstract

Abu-Omar and Kittaneh [Numerical radius inequalities for products of Hilbert space operators, J. Operator Theory 72(2) (2014), 521-527], wonder what is the smallest constant c such thatw(AB) ? c||A||w(B) for all bounded linear operators A, B on a complex Hilbert space with A is positive. Here, w(?) stands for the numerical radius. In this paper, we prove that c = 3?3/4.

Locations

Similar Works

Action Title Year Authors
+ On inequalities for A-numerical radius of operators 2019 Pintu Bhunia
Kallol Paul
Raj Kumar Nayak
+ On inequalities for A-numerical radius of operators 2019 Pintu Bhunia
Kallol Paul
Raj Kumar Nayak
+ $A$-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications 2020 Pintu Bhunia
Kais Feki
Kallol Paul
+ $A$-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications 2020 Pintu Bhunia
Kais Feki
Kallol Paul
+ Furtherance of Numerical radius inequalities of Hilbert space operators 2021 Pintu Bhunia
Kallol Paul
+ Improvement of $A$-numerical radius inequalities of semi-Hilbertian space operators 2020 Pintu Bhunia
Raj Kumar Nayak
Kallol Paul
+ Improvement of $A$-numerical radius inequalities of semi-Hilbertian space operators 2020 Pintu Bhunia
Raj Kumar Nayak
Kallol Paul
+ PDF Chat Development of inequalities and characterization of equality conditions for the numerical radius 2021 Pintu Bhunia
Kallol Paul
+ PDF Chat A-Numerical Radius Orthogonality and Parallelism of Semi-Hilbertian Space Operators and Their Applications 2020 Pintu Bhunia
Kais Feki
Kallol Paul
+ Furtherance of Numerical radius inequalities of Hilbert space operators 2021 Pintu Bhunia
Kallol Paul
+ Development of inequality and characterization of equality conditions for the numerical radius 2021 Pintu Bhunia
Kallol Paul
+ Inequalities For Numerical Radius And The Spectral Norm Of Hilbert Space Operators 2013 Mohammad Al-Hawari
+ Refined inequalities for the numerical radius of Hilbert space operators 2021 Pintu Bhunia
Suvendu Jana
Kallol Paul
+ On A-numerical radius inequalities for $2 \times 2$ operator matrices 2020 Nirmal Chandra Rout
Satyajit Sahoo
Debasisha Mishra
+ PDF Chat Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators 2021 Pintu Bhunia
Raj Kumar Nayak
Kallol Paul
+ New Estimates on Numerical Radius and Operator Norm of Hilbert Space Operators 2020 Mahmoud Hassani
Mohsen Erfanian Omidvar
Hamid Reza Moradi
+ PDF Chat Some inequalities related to numerical radius and distance from scalar operators in Hilbert spaces 2023 Mohamed Chraïbi Kaadoud
El Hassan Benabdi
Messaoud Guesba
+ PDF Chat Some new refinements of numerical radius inequalities for Hilbert and semi-Hilbert space operators 2023 Zakaria Taki
Mohamed Kaadoud
+ On $\mathbb{A}$-numerical radius inequalities of operators and operator matrices 2020 Raj Kumar Nayak
Pintu Bhunia
Kallol Paul
+ PDF Chat q-numerical radius inequalities for product of complex linear bounded operators 2024 Mohamed Chraïbi Kaadoud
Somayya Moulaharabbi